

Neonatal Resuscitation: Scientific Basis

MANUE 2019 NEONATOLOGY **2019 43**rd International Conference November 10-13, 2019

Satyan Lakshminrusimha, MD Professor and Chair of Pediatrics, Pediatrician-in-Chief, UC Davis Children's Hospital Sacramento, California

All images courtesy of Satyan Lakshminrusimha, MD. Copyright © 2020 Satyan Lakshminrusimha

Children are Not Small Adults

Evidence-Based Medicine vs. Physiologic Approach in Micro-preemies

UC DAVIS CHILDREN'S HOSPITAL

Initial Questions to the Delivering Team

- Cord Management
- Length of gestation (or Last Menstrual Period LMP or EDD)
- Amniotic Fluid (Meconium, blood stained or clear)
- •Single / Multiple gestation
- Predisposing factors
 - Maternal diabetes
 - Hypertension

Placental Transfusion Intact cord milking

Milking 3 to 4 times in infants in need of resuscitation

Placenta

Rapid bolus of 10-20 ml of blood

Placental Transfusion Cut cord milking

Changing Guidelines: Suction Meconium – Vigorous vs. Non-vigorous

Metaanalysis – No Difference in Mortality/MAS

1.1 Mortality

	NoETsu	ction	ETsuct	tion		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Chettri et al	12	61	10	61	31.1%	1.20 [0.56, 2.57]	
Kumar et al.	5	66	9	66	28.0%	0.56 [0.20, 1.57]	
Nangia et al	4	88	9	87	28.2%	0.44 [0.14, 1.37]	
Singh et al.	7	77	4	75	12.6%	1.70 [0.52, 5.58]	
Total (95% CI)		292		289	100.0%	0.87 [0.54, 1.40]	
Total events	28		32				
Heterogeneity: Chi ² =	4.02, df = 3	(P = 0.2	6); l ² = 25	5%			
Test for overall effect:	Z = 0.58 (P	= 0.56)				F	0.05 0.2 1 5 20 Favours No ET suction Favours ET suction

Metaanalysis – No Difference in Mortality/MAS

1.2 Meconium aspiration syndrome

	NoETsu	ction	ETsuct	tion		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Chettri et al	19	61	20	61	21.4%	0.93 [0.43, 1.99]	
Kumar et al.	15	66	21	66	25.3%	0.63 <mark>[</mark> 0.29, 1.37]	
Nangia et al	23	88	28	87	32.4%	0.75 <mark>[</mark> 0.39, 1.43]	
Singh et al.	44	77	31	75	20.9%	1.89 [0.99, 3.60]	
Total (95% CI)		292		289	100.0%	1.00 [0.70, 1.41]	
Total events	101		100				
Heterogeneity: Chi ² =	5.94, df = 3	(P = 0.1	$1)(1^2 = 50)$	1%			
Test for overall effect:	Z = 0.02 (P	= 0.98)				F	0.2 0.5 1 2 5 avours No ET suction Favours ET suction

个 NICU Respiratory Admissions with No Routine Suction

TABLE 3 Neonatal Therapy and Outcomes
 Denominator – non-vigorous babies with MSAF

	Retrospective ($N = 130$)	Prospective ($N = 101$)	OR (95% CI) ^a
	Routine Tracheal Suction	No Routine Tracheal Suction	
NICU respiratory admissions ^b	29 (22)	40 (40)	2.2 (1.2–3.9)
Oxygen therapy ^b	24 (19)	37 (37)	2.5 (1.2-4.5)
Mechanical ventilation ^b	11 (9)	19 (19)	2.6 (1.1-5.8)
Surfactant therapy ^b	3 (2)	10 (10)	5.8 (1.5-21.8)
Inhaled nitric oxide therapy	3 (2)	6 (6)	2.9 (0.71–12)
Hypothermia therapy	4 (3)	5 (5)	1.8 (0.55–5.4)
MAS	7 (5)	11 (11)	2.3 (0.83–6.2)
HIE	5 (4)	6 (6)	1.4 (0.39–4.9)
Transfer for ECM0	2 (2)	1 (1)	0.69 (0.06-7.8)

^a Adjusted for late preterm, postterm, and deliveries with fetal distress. ^b P < .05.

Chiruvolu et al Pediatrics 2018

Vermont Oxford Network - ≥ 35 w GA + Meconium Aspiration syndrome + Apgar Score < 3 at 1 min

	2013-15	2017	RR (95% CI)
Total Births	N=222,438	N=78,712	
MAS with Apgar < 3 at 1 min	N=1586	N=362	
Endotracheal suctioning, %	82.4	52.1	0.63 (0.56, 0.71)
Conventional or high frequency ventilation, %	57.4	61.9	1.08 (0.97, 1.20)
Inhaled nitric oxide, %	16.2	21.9	1.35 (1.08, 1.69)
ECMO, %	1.8	2.3	1.23 (0.47, 3.19)
Surfactant at any time, %	27.7	36.0	1.30 (1.09, 1.55)
Outcomes			
Death, %	5.3	7.2	1.38 (0.88, 2.16)
Pneumothorax, %	10.3	11.5	1.11 (0.80, 1.55)
Moderate/severe hypoxic-ischemic encephalopathy, %	12.1	20.1	1.67 (1.27, 2.19)

Edwards E et al Children 2019

The current "no routine suction" recommendation has not led to increased ECMO for MAS

Treatment Recommendations – ILCOR 2019 (Consensus on Science with Treatment Recommendations (CoSTR))

- For non-vigorous newborns delivered through meconium-stained amniotic fluid, we suggest against routine immediate direct laryngoscopy after delivery with or without tracheal suctioning when compared to immediate resuscitation without direct laryngoscopy.
- Meconium-stained amniotic fluid remains a significant risk factor for receiving advanced resuscitation in the delivery room.
- A provider may perform intubation and tracheal suctioning to relieve airway obstruction.

© 2015 American Heart Association

What is Optimal Oxygenation in the Delivery Room?

Term: Effects of Resuscitation with 100% O₂

What about Preterm Infants?

Saugstad et al Pediatric Research 2018

Oei JL et al Arch Dis Child Fet Neonatal Ed 2018

Crawshaw JR, Kitchen MJ, Binder-Heschl C, et al. Arch Dis Child Fetal Neonatal Ed 2018;**103**:F112–F119.

What is Optimal Oxygenation in the Delivery Room?

DELIVERY ROOM > 31 v 28-31

Delivery room > 31 weeks: air 28-31 weeks: air or 30 % < 28 weeks: 30% At 5 min: SpO₂≥80 % and HR > 100 bpm

ILCOR – CoSTAR treatment guidelines:

We suggest starting with a lower oxygen concentration (21-30%) compared to higher oxygen concentration (60-100%) for preterm (<35 weeks gestation) newborns who receive respiratory support at birth with subsequent titration of oxygen concentration using pulse oximetry (weak recommendation, very low certainty of evidence).

Resuscitation -Epinephrine

- Intravenous (UV) administration of epinephrine may be considered at a dose of 0.01 to 0.03 mg/kg of 1:10,000 epinephrine followed by 0.5 to 1 ml of flush.
- If an endotracheal administration route is attempted while intravenous access is being established, higher dosing will be needed at 0.05 to 0.1 mg/kg.

ETT Epinephrine

Nair et al Early Hum Dev 2019

Current Recommended Flush – 0.5 to 1 ml

Volume of a 5 Fr single lumen UVC is 0.56 ml

Potential Benefit Of Higher Flush Volume

Distribution Of Epinephrine

 A. Epinephrine followed by 1 ml contrast (Omnipaque) flush + 30 sec of chest compressions

Vali et al

Children

journal

2019

B. Epinephrine followed by 10 ml contrast (Omnipaque) flush + 30 sec of chest compressions

33

	· · · · · · · · · · · · · · · · · · ·		i		
Parameter	Low dose (0.	01 mg/kg)n=11	High dose (0.03 mg/kg)n=12		
	Low flush(6)	High flush(5)	Low flush(7)	High flush(5)	
ROSC achieved n(%)	2 (33%)	2 (40%)	5 (71%)	5 (100%)	
ROSC with 1 st dose of epi	1 (16.7%)	2 (40%)	3 (42%)	4 (80%)†	
Median time to ROSC from PPV (sec)	697 (536-858)^	397 (396-398)	480 (372-600)	420 (360-420)	
Median time to ROSC from epi & flush (sec)	127 (101-153)^	47 (41-53)	90 (60-120)	36 (30-60)	

ROSC: Return of Spontaneous Circulation

^ p<0.05 low dose low flush vs high dose high flush. (unpaired t test)

†p<0.05 high dose high flush vs low dose low flush

Sankaran et al PAS 2019

Ligh flush(5)

<u>0⁄</u>_)

Summary

- Ventilation of the lungs is the key to neonatal resuscitation
- Increasing heart rate is the most important sign of effective resuscitation
- Avoid cord milking in extremely preterm infants
- 21% oxygen may not be adequate for initial resuscitation of extremely preterm infants
- Epinephrine: avoid multiple ET doses
- UVC epinephrine: 0.03mg/kg → 3 ml/kg flush

All images courtesy of Satyan Lakshminrusimha, MD. Copyright © 2020 Satyan Lakshminrusimha