

Lucile Packard Children's Hospital Stanford

Outcomes of Children Born Extremely Preterm

Miami Neonatology 2020 November 18, 2020

Susan R. Hintz, MD, MS Epi Robert L. Hess Family Professor Stanford University School of Medicine

Outline -

- Changes in survival and survival without major morbidity
- Neurodevelopmental outcomes of children born extremely preterm -
 - Toddlers, children, and challenges to interpretation
- Are we asking the right questions?
 - Beyond traditional outcomes -
- Possibilities for changing the trajectory of research and outcomes

Dr. Susan Hintz has no conflicts of interest or financial disclosures.

Survival of infants born extremely preterm

EXPRESS 2 → Swedish national prospective study of survival and outcomes of infants 22-26 weeks'

- One-year survival among live-born infants:
 - 70% during 2004-07
 - 77% during 2012-16
 - -7% [95%CI, -11% to -2.2%], p = 0.003

Stoll BJ, et al. *JAMA* 2015;314:1039-1051.

Survival without major morbidity

EXPRESS 2 → 1-year survival without any major morbidity (22-26 weeks'):

- 32% during 2004-2007
- 38% during 2012-2016
 - -6% [95%CI, -11% to -1.7%], p = 0.008.

Norman M, et al. JAMA2019;321:1188-1199

In California, survival to discharge without major morbidity improved among <u>VLBW</u> (~62% to 67%) from 2008-2017 (p<0.001)

- Largest gains among infants born <27 weeks'
- Substantial variation across sites.

Lee HC, Liu J, Profit J, Hintz SR, Gould J. *Pediatrics* 2020; 146:e20193865

Shifting focus to neurodevelopmental outcomes

- As the number of extremely preterm infants surviving to discharge increases, attention has appropriately shifted to understanding neurodevelopmental outcomes.
- Neonatal clinical trials now frequently include ~ 2-year neurodevelopmental endpoints as part of the primary outcome or a main secondary outcome.

How is "neurodevelopmental outcome" measured?

Follow up *only* to ~18 months - 3 years corrected age for the *vast* majority trials and prospective studies.

Gross Motor function

 Neurologic examination; diagnosis of cerebral palsy, severity by Gross Motor Function Classification System (GMFCS)

Palisano R, et al Dev Med Child Neurol 1997;39:214-223

"Cognitive" and developmental assessment

Bayley II → Bayley III → Bayley 4

Hearing and Vision

How is "impairment" or "disability" defined?

- "NDI"- a composite outcome
 - Combines criteria and cut points from several domains including motor, cognitive/ developmental, neurosensory.
 - Generally categorized by severity - but definitions and cut points within each component varies among studies and cohorts.
 - None, mild, moderate, severe

Challenges to interpretation

Relative prevalence of component, response to interventions.

Marlow N. Arch Dis Child Fetal Neonatal 2013; 98:F554

- Changes in instruments—e.g., Bayley II vs. III (vs. Bayley 4...)
 - Bayley-III reported to underestimate developmental delay

Anderson PJ et al. *J Pediatr*. 2018;197:75-81, Vohr BR, et al *J Pediatrics* 2012; 161:222 Moore T, et al. J Pediatr 2012;160:553-8

- "NDI" definition and age at FU not consistent across studies.
 - Multiple definitions across literature even in "severe NDI"

Haslam M, et al. J Pediatr. 2018;197:75-81

Differing rates of NDI, death or NDI across centers within networks.

Synnes A, et al *ADC Fetal Neo* 2017; 102: F235; Vohr BR, et al. *Pediatrics* 2004; 113: 781

• Family and functionalperspective

Janvier A, et al. Seminars Perinatol 2016, 40: 571

Spectrum of neurodevelopmental outcomes

- Children born <u><26 weeks EGA</u> in NICHD Neonatal Research Network
- Neurodevelopmental assessment completed <u>2011-2014</u> at 18-26 months corrected age
- 2113 children evaluated; mean GA 25±1 weeks, mean BW 760±154 g.

Overall - neurological examination findings:

•59% no abnormal or suspect findings; 19% suspect;
10% abnormal non-CP; 12% CP

Neurodevelopmental outcomes over time:

≤ 26-week EGA at 18-26 months corrected age

Decrease in severe CP over time:

≤ 26-week EGA at 18-26 months corrected age

Decrease in severe CP over time: Australian Cerebral Palsy Register (ACPR)

Outcomes at age 2 years of infants <28 weeks' GA Comparison of 3 birth cohorts in Victoria, Australia

	1991-92	1997	2005
Survivors, n	225	151	172
Survivors assessed, n	219 (97.3%)	149 (98.7%)	163 (94.8%)
CP	24 (11.0)	18 (12.1)	16 (9.8)
Blindness	5 (2.3)	4 (2.7)	0 (0)
Deafness	2 (0.9)	2 (1.3)	4 (2.5)
No developmental delay	128* (58.4)	81 (54.4)	85 (52.1)
Mild developmental delay	51 (23.3)	32 (22.1)	52 (31.9)
Moderate developmental delay	24 (11.0)	14 (9.4)	20 (12.3)
Severe developmental delay	16 (7.3)	22 (14.8)	6 (3.7)
No disability	119 (54.3)	72 (48.3)	83 (50.9)
Mild disability	54 (24.7)	35 (23.5)	47 (28.8)
Moderate disability	29 (13.2)	19 (12.8)	27 (16.6)
Severe disability	17 (7.8)	23 (15.4)	6 (3.7)

<25-week EGA outcomes at 18-22 months (birth 2000 to 2011)

What about <u>later</u> outcomes of children born extremely preterm?

Importance of longer-term outcomes

- Later cognitive and behavioral outcomes are complex influenced multiple factors
- Changes in, relative importance of various outcomes vary substantially among individuals and across different time points.
- Later follow up may provide critical additional outcomes and safety data, and information about changes over time.

Woodward L, Huppi P. "Neurodevelopmental Follow-Up" (Chapter 11) in Volpe's Neurology of the Newborn, 6th Edition. Elsevier (Philadelphia) 2018

Neurodevelopmental Disability at 6.5 years

EXPRESS cohort (birth years 2004-2007)

Serenius F, et al. *JAMA Peds* 2016; 170: 954

VICS: Outcomes at 8 years by GA – 3 birth cohorts (1991-92, 1997, 2005)

	N	Death	Major disability	No major disability	Not assessed
22 weeks	7	5 (71%)	1 (14%)	0 (0%)	1 (14%)
23 weeks	44	23 (52%)	6 (14%)	14 (32%)	1 (2%)
24 weeks	99	44 (44%)	11 (11%)	41 (41%)	3 (3%)
25 weeks	179	57 (32%)	22 (12%)	94 (53%)	6 (3%)
26 weeks	205	41 (20%)	27 (13%)	126 (61%)	11 (5%)
27 weeks	217	35 (16%)	19 (9%)	138 (64%)	25 (12%)
Total	751	205 (27%)	86 (11%)	413 (55%)	47 (6%)
Data are n (%). Gestational ages are in completed weeks.					

Major disability among survivors

23 weeks -29%

24 weeks -20%

25 weeks -18%

26 weeks -17%

27 weeks -10%

Rates of major disability were **similar** across birth eras:

• 1991–1992, = 18%; 1997 = 15%; 2005 = 18%

Predicting school age from toddlerhood??

Importance of longer-term outcomes

Table 5. Change in Classification of Overall Disability From 2.5 to 6.5 Years for Children Born Extremely Preterm and Assessed at Both Ages^a

Disability at 2.5 y	Disability at 6.5	5 y, No. (%) of Childr	en		<u></u>
Corrected Age	None	Mild	Moderate	Severe	Total No.
None	108 (58.4)	52 (28.1)	19 (10.3)	6 (3.2)	185
Mild	36 (27.1)	48 (36.1)	42 (31.6)	7 (5.3)	133
Moderate	12 (16.9)	27 (38.0)	17 (24.3)	14 (20.0)	70
Severe	1 (2.2)	4 (8.9)	11 (24.4)	29 (64.4)	45
Total	157 (36.3)	131 (30.3)	89 (20.6)	56 (12.9)	433

Only 47% remained in the same category →

• 21% moved to a better category, 32% moved to a worse category.

Predicting school age from toddlerhood??

Importance of longer-term outcomes

Marlow N, Wolke D, Bracewell M, et al. NEJM 2005; 353:9

SUPPORT NEURO Hintz, Bann, Vohr, et al., Pediatrics 2018, PAS 2018

Movement ABC scores at 6-7 years - NEURO cohort

Are we asking all the right questions?

What about outcomes important to families?

"Real life" endpoints

 Usual research/ trial outcomes confusing, or only short-term endpoints; personalize data

Functional outcomes

- Concept of child's health and well being in terms of function, activities, participation
- Parent and child well-being, family impact and interactions.
- Daily life factors

Janvier A, et al. *Semin Perinatol* 2016, 40: 571; **Petty J**, et al NCYP 2018.e1084; Carter F, Msall ME. *Clin Perinatol* 2018, 45: 501; Kilbride HW, et al. *Clin Perinatol* 2018, 45: 467

Re-hospitalizations and medical equipment: Birth years 2013-2016, follow up at 22-26 months CA

	22 weeks	23 weeks	24 weeks	25 weeks	26 weeks	22-26 weeks
Hospitalized since discharge, N (%)	20 (64.5)	171 (59.0)	311 (54.9)	360 (49.2)	415 (44.1)	1277 (49.9)
If yes, median (IQR) # times	3 (2-4)	2 (1-3)	2 (1-3)	2 (1-3)	1 (1-3)	2 (1-3)
Selected equipment/ assistive devices n (%)						
Gastrostomy tube and/or tube feeding	6 (19.4)	52 (17.9)	81 (14.3)	75 (10.2)	80 (8.5)	294 (11.5)
Oxygen	3 (9.7)	33 (11.4)	33 (5.8)	36 (4.9)	30 (3.2)	135 (5.3)
Tracheostomy	1 (3.2)	19 (6.6)	29 (5.1)	23 (3.1)	22 (2.3)	94 (3.7)
Braces/orthotics	7 (22.6)	60 (20.7)	88 (15.5)	80 (10.9)	93 (9.9)	328 (12.8)

Service Utilization at 1st HRIF Visit

VLBW = very low birth weight; **HIE** = hypoxic ischemic encephalopathy

	VLBW N=4900	HIE N=193
Medical specialties - currently receiving	n (%)	n (%)
0	1845 (38%)	68 (35%)
1 to 2	2502 (51%)	90 (47%)
3 to 4	477 (10%)	30 (16%)
5 or more	76 (2%)	5 (3%)
Special services - currently receiving		
0	3369 (59%)	105 (54%)
1 to 2	1344 (27%)	65 (34%)
3 to 4	168 (3%)	21 (11%)
5 or more	19 (0.4%)	2 (1%)

Median age at follow up = 6 months

The Impact to the Parent and Family – Depression, anxiety, trauma

 Parents of NICU babies at ↑↑ risk for depression, anxiety, trauma – may persist for years.

↑ stress, anxiety, trauma significantly associated with **dysfunctional coping**, cognitive and behavior/ motor challenges in toddlerhood

Shaw RJ, et al. J Clin Psych Med 2013; Greene M, et al. Early Hum Dev 2017, Zelkowitz P, et al. Acta Paediatr 2011

Horwitz SM, et al. J Dev Behav Ped 2015; Zelkowitz P, et al. Early Hum Dev 2009; Landry SH, et al. Dev Psych 2006

Protective effects of positive home environment on EPT/ VPT outcomes;
 negative effect of parental stress and family dysfunction.

Treyvaud K, et al. J Exp Chid Psych 2012; Semin Fetal Neonatal 2014

"Early Intervention"

 "Early intervention" may encompass <u>many different components</u>, <u>services</u>, <u>disciplines</u> –

Spittle A, et al. Cochrane Database of Systematic Reviews 2015, Issue 11. Art. No.: CD005495.

- Concluded that early intervention has a positive influence on cognitive outcomes through preschool and motor outcomes to ~ 2 years.
- Early diagnosis and intervention for cerebral palsy both child and parents.

Novak I, et al. JAMA Pediatr 2017; 171: 897-907; Maitre NL, et al. Pediatrics 2020; 145: e20192126; Irwin L, et al. Research in Developmental Disabilities 2019; 19: 103511

<u>Getting to follow up:</u> Improved Referral of VLBW to HRIF in California after QI Initiative

- Pre-intervention period birth 1/10-6/13: 83%
 referred
- Post-intervention period birth 7/13-12/16: 95%
 referred

Substantial \uparrow in referral rates by sociodemographic and program-level factors - - but disparities remain.

Hintz SR, et al. *J Pediatrics* 2015;166:289-95; Pai V, et al *J Pediatrics* 2020;216:101-108.e1

<u>Getting to follow up:</u> Factors associated with successful 1st visit for infants born VLBW in California

Factor	Adjusted OR (95% CI)	p-value
Associated with higher odds		
Maternal age (vs 20-29)		
30-39	1.48 (1.27, 1.72)	< 0.0001
Maternal prenatal care	1.92 (1.34, 2.77)	0.0004
Birth weight (vs. 1251-1499 g)	•	
<=750 g	2.11 (1.69, 2.65)	< 0.0001
751-1000 g	1.81 (1.51, 2.17)	< 0.0001
1001-1250 g	1.34 (1.14, 1.58)	0.0005
Severe ICH	1.61 (1.12, 2.3)	0.0093
Insurance (vs CCS or MediCal only)		
HMO/PPO + CCS	1.65 (1.19, 2.31)	0.003
Two parent 1 caregiver (vs. one only)	1.18 (1.03 - 1.36)	0.019
HRIF program VLBW volume (vs. lowest qu	uartile)	
2 nd quartile	2.62 (1.88, 3.66)	< 0.0001
3 rd quartile	1.55 (1.15, 2.10)	0.0045
Associated with lower odds		
Maternal race African American	0.65 (0.54, 0.78)	< 0.0001
Miles from HRIF program (vs. lowest quartie	le)	-
Highest quartile	0.69 (0.57, 0.83)	0.0002
3 rd quartile	0.79 (0.65, 0.96)	0.018

Hintz SR, et al. J Pediatr. 2019; 210:91-98.e1

Interventions and outcomes – Engagement in the NICU → home and community

Innovative transition to home program (Brown): ↓ ER visits,
 rehospitalizations, health care use.

Vohr BR et al. J Perinatol 2017 & 2018, Early Hum Dev 2012

• Interventions beginning in NICU and continuing after DC, including "Triple P" (Brisbane) - **improved Bayley III cognitive and motor score** at 2 years.

Colditz PB, et al. *J Pediatr* 2019; 210: 48

Family Integrated Care intervention (25 NICUs) → ↓ parent stress/anxiety, ↑wt gain and breast feeding at discharge.

O'Brien K, et al, Lancet Child Adolsc Health 2018; 2: 245

• **Rethinking** intervention — supporting parent mental health, responsive parenting Van Wassenauer-Leemhuis AG, et al, DMCN 2016; 58(suppl 4): 67-73

Horbar J, et al *Pediatrics*. 2020; doi: 10.1542/peds.2020-0360

Lean R, et al *Curr Treat Options Pediatr.* 2018; 4(1):49–69

Health-related QoL

Quality of life at adolescence and adulthood for ELBW

- Self-perceived HRQoL for NBW and ELBW
 - Fewer ELBW than NBW respondents (24% vs 46%) reported "perfect health".
 - Young adulthood: <u>NO difference</u> between NBW and ELBW in HRQoL (0.85 vs.0.88).
- Using indirect methods only
 - ELBW with lower HRQoL teens → mid 30's, especially among those with neurosensory impairments

Quality of Life for parents of adults born very preterm

Bavarian Longitudinal Study; prospective population-based, VLBW or VP born 1985-86

- WHO QoL (short) Instrument
 - Evaluated with respect to <u>child functioning factors</u> previous assessments - disability, mental health, academic achievement, peer relationships, parentchild relationship.
 - Parent QoL predicted by child <u>mental health</u> and <u>peer relationships.</u>
 - Consistent with Saigal S, et al Pediatrics 2010
 - Participation limited (VLBW group = 59%, term = 74%), dropouts not random.

→ Importance of integrating psychological support and interventions

Common Core Assessments in follow-up studies of adults born preterm—Recommendation of the Adults Born Preterm International Collaboration

```
Eero Kajantie<sup>1,2,3,4</sup>  | Samantha Johnson<sup>5</sup> | Kati Heinonen<sup>6</sup> | Peter J. Anderson<sup>7,8</sup>  | Dieter Wolke<sup>9,10</sup> | Kari Anne I. Evensen<sup>3,11,12,13</sup> | Katri Räikkönen<sup>6</sup> | Brian A. Darlow<sup>14</sup> | Sylvia van der Pal<sup>15</sup> | Marit S. Indredavik<sup>3</sup> | Julia Jaekel<sup>1,9,16</sup> | Petteri Hovi<sup>1,4,17</sup> | Katherine Morrison<sup>18</sup> | Erik Verrips<sup>15</sup> | Lex W. Doyle<sup>8,19</sup> | APIC Adults Born Preterm International Collaboration
```


Paediatr Perinat Epidemiol 2020 (ahead of print)

- Cardiometabolic measures
- Respiratory outcomes
- Motor challenges
- Mental health

- HRQoL
- Relationships
- Independent living...
- Others

- Preemie Voices themes...
 - Importance of emotional, personal, psychological support; coping and resilience.
 - Gratitude and living with "different abilities".

Saigal S. Preemie Voices, Friesen Press, 2014

Challenges to reshaping the future

- Much is invested in the survival of the tiniest and highest risk babies.
 - We must now invest in the best possible life course outcomes for them and their families.

- Truly long-term research must be a priority.
- Pursue innovative research and intervention frameworks with outcomes important to families
 - → beyond the NICU exit doors.