

# Nutrition in the First 1,000 Days: Vitamin D

Presented by

Carol L. Wagner, MD



### **Presenters**

Carol L. WAGNER, MD

Professor of Pediatrics Medical University of South Carolina Charleston, South Carolina



# **Faculty Disclosures**

Carol L. Wagner, MD

No relationships to disclose



# Learning Objectives Nutrition in the First 1,000 Days: Vitamin D





Summarize vitamin D insufficiency for mothers and infants in the first 1,000 days



Describe the role of vitamin D in growth and development, beyond bone health



Develop proper vitamin D monitoring and supplementation plans in pregnant women and infants



# Significance of Vitamin D for Pregnant Women and Infants

In the absence of vitamin D, none of our body systems work well.



### First 1,000 Days of Life

- First 1,000 days of life refers to conception through the child's second birthday
- Optimal nutrition is essential during this period to support:
  - Fetal growth and development
  - Maternal health (including the postpartum period and lactation)
  - Fuel for the infant and toddler growth (until 2 years of age)





### Vitamin D is Essential to Mother and Child

Vitamin D is 1 of 9 nutrients important for healthy pregnancy and infant/toddler development

- Carotenoids (lutein + zeaxanthin)
- Choline
- Folate
- Iodine
- Iron
- Omega-3 fatty acids
- Protein
- Vitamin D
- Zinc

- All these key nutrients should be included in maternal and infant diet
- Failure to provide these key nutrients during the first 1,000 days of life can result in lifelong deficits
- Strong mother/infant vitamin D relationship affects status both in utero and in infancy



### Vitamin D is Essential to Mother and Child

- The body needs vitamin D to absorb calcium
- Vitamin D supports and regulates:
  - Skeletal system
  - Calcium levels by increasing calcium absorption
  - Phosphorus metabolism and bone health
  - Immune function—affects both innate and adaptive immunity
- May negate adverse pregnancy outcomes



# Pregnancy: Three Major Vitamin D Changes

3 major adaptations in vitamin D homeostasis:

- Increase in maternal calcitriol
- 2. Maternal 25(OH)D availability via the placenta for optimal neonatal 25(OH)D status
- 3. Increase in maternal VDBP concentrations—genotype differences can affect 25(OH)D concentrations throughout the body

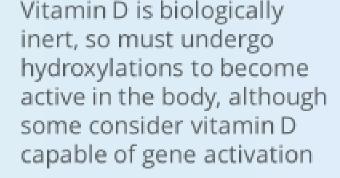
25(OH)D, 25-hydroxycholecalciferol; VDBP, vitamin D-binding protein.



### Importance During Gestation

- Active through hepatic and renal metabolism
- Both mother and fetus have high concentrations of the active form of vitamin D—1,25(OH)<sub>2</sub>D or calcitriol—also thought to have immune effects
- Transfer of calcidiol, or 25(OH) D, across the placenta
  - Converted to calcitriol or 1,25(OH)<sub>2</sub>D by the fetus
    - » Calcitriol is the active form of D made in the kidney
- Need working placenta, 25(OH)D crosses the placenta, not the active form or parent compound vitamin D

1,25(OH)<sub>2</sub>D 1,25-dihydroxyvitamin D.






#### **Active Vitamin D**

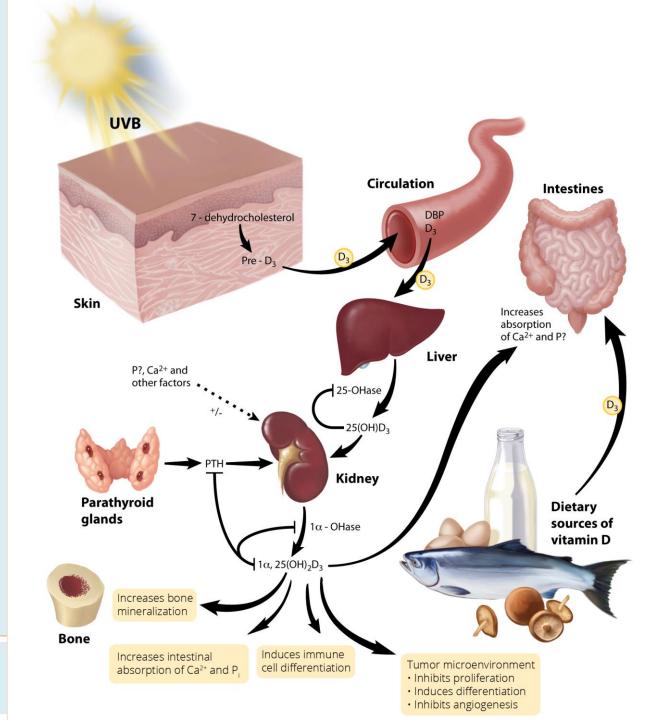
- Promotes calcium absorption
- Required for bone growth
- Prevents rickets in children
- Helps reduce inflammation
- Modulates cell growth, neuromuscular and immune function, and glucose metabolism

Vitamin D sources: sun exposure, foods, and supplements



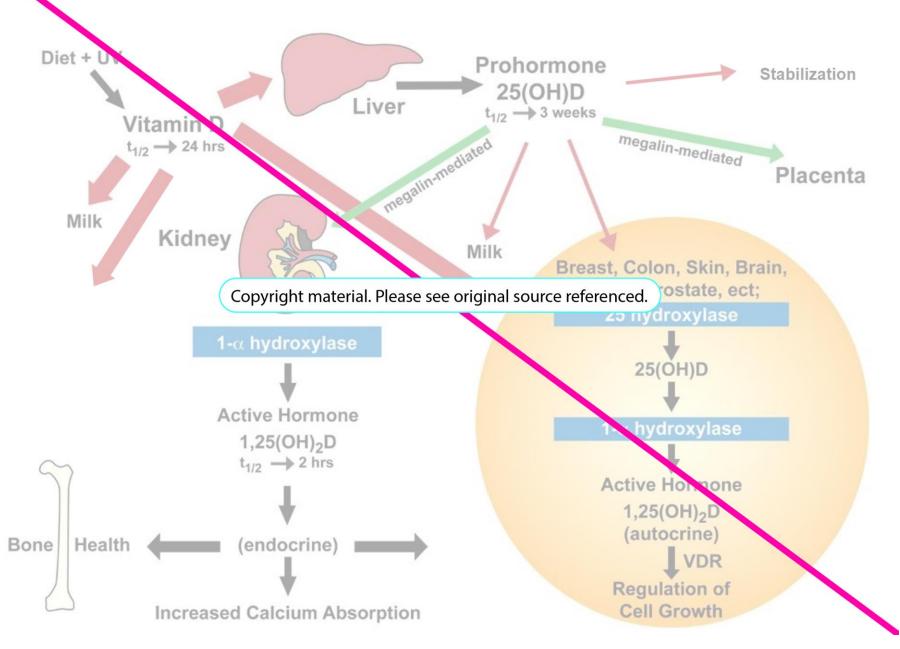


1st hydroxylation occurs in the liver; converts vitamin D to 25(OH)D, aka **calcidiol** 




2nd hydroxylation occurs in the kidney; forms active 1,25(OH)<sub>2</sub>D, aka **calcitriol** 




### Cycle of Vitamin D Metabolism

- Extra-renal—immune cells taking in vitamin D 25 and making 1,25
- Important for immune function—vitamin D's role facilitating or enabling the body's immune function





#### **Vitamin D and Tissue Homeostasis**



### Common Vitamin D Deficiency Worldwide

- 18%–84% deficiency worldwide<sup>[1],[2]</sup>
- Deficiency higher for those...<sup>[3]</sup>
  - Living in northern climate/high latitudes
  - With inadequate sunlight exposure
  - With darker skin pigmentation
  - Living among high levels of air pollution
  - With higher BMI

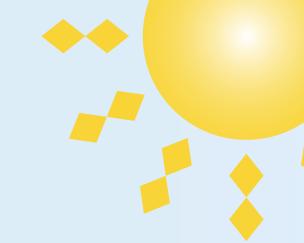
- With chronic gastrointestinal malabsorption (eg, Crohn's disease, cystic fibrosis)
- On Western diet (<10% of vitamin D stores)
- 1f VDBP allele vs 1s VDBP allele<sup>[4]</sup>

VDBP, vitamin D-binding protein.



# Sources of Vitamin D – Dermal Synthesis

- Sunlight is the best natural source of vitamin D
  - Main source of vitamin D is conversion of a cholesterol substrate (7-dehydrocholesterol) in the epidermis of the skin following ultraviolet B sunlight exposure
- Factors of sun absorption (or malabsorption) include
  - Time of day
  - Geographical location
  - Skin color
    - » 15 minutes for a person with light skin
    - » Longer periods (hours) for a person with darker skin pigmentation
  - Widespread use of sunscreen
- Children under 6 months should be kept out of direct strong sunlight affecting their synthesis of vitamin D




### **Blocking Potent Vitamin D**

- Vitamin D status also depends on
  - Time spent outdoors
  - Season/time of year and angle of sun's rays
  - Use of sunscreen and UV protective clothing
  - Genotype of VDBP (1f vs 1s allele)
- The use of sunscreen blocks synthesis of vitamin D
- Some parts of the world put sunscreen on 10–15 mins after being outside (eg, European countries)

VDBP, vitamin D-binding protein.





### **Nutritional Sources of Vitamin D**

- Fatty fish
  - salmon, tuna, mackerel, herring, and sardines
- Egg yolks
- Mushrooms







Often fortified with vitamin D but with limited amounts





Breakfast cereals



Yogurt



Orange juice





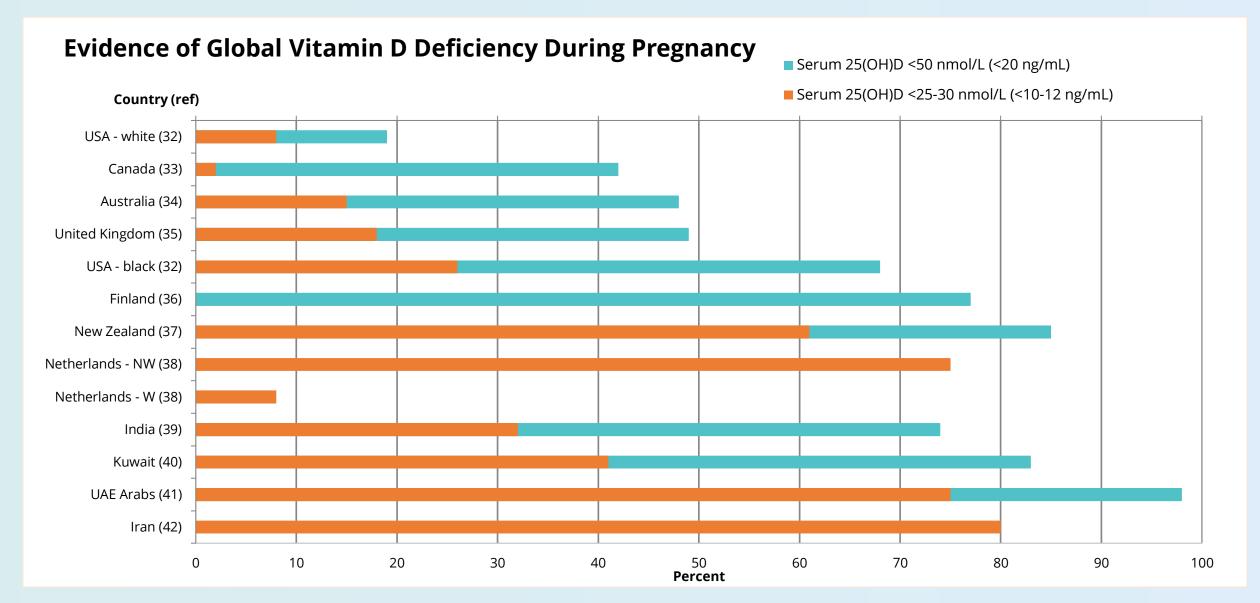
# Vitamin D Deficiency Under-Recognized

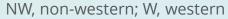
- Vitamin D deficiency is under-recognized in pregnant women, which has significant implications for the developing fetus
- Studies show race is most important risk factor for D deficiency or insufficiency<sup>[1],[2]</sup>
- What is the amount of vitamin D in expecting mothers that allows optimal conversion of 25(OH)D to 1,25(OH)<sub>2</sub>D?

25(OH)D, 25-hydroxycholecalciferol; 1,25(OH)<sub>2</sub>D 1,25-dihydroxyvitamin D.



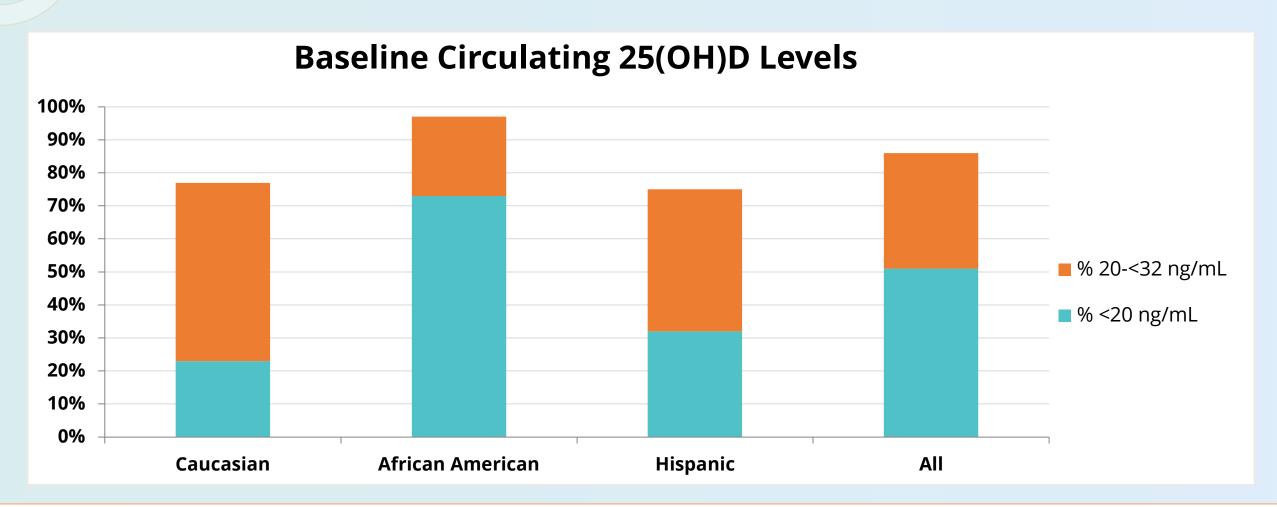
### Race as a Risk Factor for Vitamin D Deficiency


| Johnson et al 2011 | n=494 <sup>[a]</sup> | Mean (25(OH)D) levels                          | Deficient or Insufficient <sup>[b]</sup> |
|--------------------|----------------------|------------------------------------------------|------------------------------------------|
| African American   | 154                  | 15.5 ± 7.2 ng/mL                               | 97%                                      |
| Hispanic           | 194                  | 24.1 ± 8.7 ng/mL                               | 81%                                      |
| Caucasian          | 146                  | 29.0 ± 8.5 ng/mL                               | 67%                                      |
|                    |                      | 82% had vitamin D levels <32 ng/mL (<80 ng/mL) |                                          |


a. women at <14 weeks of gestation; (25(OH)D) levels measured

- Race was the most important risk factor for vitamin D deficiency or insufficiency
- African American women and Hispanic women more likely to have vitamin D insufficiency and deficiency than Caucasian women
- African Americans at greatest risk of D deficiency
- Primigravid women more at risk for D insufficiency




b. deficient (25(OH)D levels <20 ng/mL or <50 nmol/L) or insufficient (25(OH)D levels  $\geq$  20 ng/mL or <32 ng/mL or  $\geq$  50 nmol/L or <80 nmol/L)







# Evidence of Deficiency in Pregnant Women in a Sunny South Carolina Latitude 32°N, n=1053





# Impact of Vitamin D Deficiency on Maternal, Fetal, and Infant Health

- At minimum, a pregnant woman should achieve 25(OH)D concentration that supports optimal conversion of 25(OH)D to 1,25(OH)<sub>2</sub>D
  - **True or False:** this is true only during pregnancy and at no other time during the lifecycle.
- Vitamin D deficiency has implications for both maternal and fetal well-being
- Deficiency states of pregnancy carry over into the lactation period and directly affect maternal transfer of D in breast milk
  - Content in breast milk directly reflects maternal vitamin D status



### Vitamin D Deficiency – Prevalence in Infants

Vitamin D deficiency prevalence in US pediatrics is 15% (1–11 years)

- <40% of infants met AAP vitamin D intake guidelines<sup>[5]</sup>
- Common among infants with dark skin pigmentation
- Common in infants exclusively breastfed beyond 3–6 months<sup>[6]</sup>
- Common among practices of body covering

AAP, The American Academy of Pediatrics.



<sup>2.</sup> Mansbach JM, et al. Pediatrics. 2009;124:1404-10. 3. Gordon CM, et al. Arch Pediatr Adolesc Med. 2008;162:505-12.

<sup>4.</sup> Taylor SN. *Breastfeed Med.* 2018;13:398-404. 5. Simon AE, et al. *Pediatrics*. 2020;145(6):e20193574.

### **Defining Vitamin D Deficiency**

- <50 nmol/L (20 ng/mL) by ESPGHAN and AAP<sup>[1]</sup>
- Breast milk low in vitamin D; average 20 IU/L<sup>[2]</sup>
  - But why?
    - » Only if mother is deficient in D
    - » Her milk content reflects D status
- Sufficiency defined: at least 75–110 nmol/L (30–44 ng/mL)<sup>[1]</sup>

AAP, The American Academy of Pediatrics; ESPGHAN, The European Society for Pediatric Gastroenterology Hepatology and Nutrition.



#### **Perinatal Risk Factors**

- Maternal vitamin D deficiency
  - Exclusively breastfed with no supplementing
  - Only 12%–20% of BF babies receive necessary vitamin D<sup>[3]-[5]</sup>
- Prematurity
- Darker skin pigmentation

BF, breastfed.



### Adverse Outcomes From Low-Maternal Vitamin D

- Preeclampsia—higher risk of maternal preeclampsia
- Gestational diabetes mellitus
- Increased risk of preterm births and SGA
- Low birth weight
- Impaired fetal growth
- Impaired dentition—enamel hypoplasia
- Increased risk of RSV

SGA, small for gestational age; RSV, respiratory syncytial virus.



### Adverse Outcomes from Low-Maternal D (continued)

#### Neurodevelopmental differences:

- Whitehouse and colleagues measured vitamin D concentration at 18 weeks of pregnancy
  - » Reported significant association between maternal vitamin D levels and offspring language impairment at 5 and 10 years
- Cohort study in Spain found higher maternal circulating vitamin
   D concentrations during pregnancy were significantly associated
   with improved mental and psychomotor development in infants



### Vitamin D Deficiency During Pregnancy

- As a preprohormone, effects of metabolites go beyond bone and calcium metabolism
- Epidemiological studies link deficiency with inflammatory and long-latency diseases
  - Breast, prostate, and colon cancers
  - Multiple sclerosis
  - Cardiovascular disease
  - Diabetes
  - Resistant tuberculosis and other infections
- Role of vitamin D during pregnancy is just beginning to be understood
  - An immune modulator with implications:
    - » Developmental origins of adult disease concept
    - » Epigenetic aspects of early development



### **Common Postnatal Risk Factors**

- Decreased nutritional intake
   If breastfeeding, big concern whether baby is getting enough vitamin D
- Skin pigmentation and low sun exposure
- Malabsorption
- Genetic disorders



# Results of Vitamin D Deficiency in Infants and Children

Osteomalacia (rickets)

Especially in exclusively breastfed infants, and even more in African American breastfed infants

- Neonatal hypocalcemia in extreme cases<sup>[1]</sup>
- Compromised immune system<sup>[2]</sup>



### Based on What We Know From Pregnancy

- Mothers who are deficient give birth to neonates who are also vitamin D deficient
  - Mothers who deliver preterm are most at risk of D deficiency and their infants are at greatest risk in early postnatal period
- If a mother is D deficient or marginally deficient, her breast milk is deficient, and so too will be her exclusively breastfed baby
  - **Solution:** Supplement the baby with 400 IU vitamin D/day
  - Consider higher dose of maternal supplementation during lactation as vitamin D—the parent compound—crosses into breast milk and is most bioavailable to the recipient breastfeeding infant



# Role of Vitamin D in Fetal Growth

Immunity regulation and impact on neurodevelopment



Role of Vitamin D in Fetal Growth

- Development of skeletal system
- Bone mineralization
- Formation of tooth enamel
- Aids calcium regulation





### Vitamin D Beyond Bone Health

### **Emerging evidence shows**

- Developing immune system
- Immunomodulatory function toward infection
- Modulate immune responses, both innate and adaptive



### Role of Vitamin D in Immunity Regulation

- Study of deficiency linked to increased rates of infections
- RSV infections associated with cord blood vitamin D status
  - Belderbos et al linked RSV infection with cord blood (neonatal) vitamin D status
  - Higher risk among those with lower vitamin D status, independent of race
- Martineau et al 2017 showed in their metanalysis vitamin D supplementation protected against acute respiratory tract infection (not specific to pediatrics)

RSV, respiratory syncytial virus.



### Vitamin D May Protect Against RSV Infection

|                               | 25(OH)D concentrations <sup>[a]</sup> |
|-------------------------------|---------------------------------------|
| 27%                           | <50 nmol/L                            |
| 27%                           | 50-74 nmol/L                          |
| 46%                           | 75 nmol/L                             |
| n= 156 neonat<br>12% develope |                                       |

- Belderbos et al 2011 show cord blood 25(OH)D concentrations strongly associated with maternal vitamin D<sub>3</sub> supplementation during pregnancy
- Concentrations were lower in neonates who developed RSV LRTI compared with those who did not (65 nmol/L vs 84 nmol/L, P = .009)
- Neonates born with 25(OH)D concentrations <50 nmol/L had a 6x<sup>[b]</sup> increased risk of RSV LRTI in first year of life vs those with 25(OH)D concentrations ≥75 nmol/L

<sup>25(</sup>OH)D, 25-hydroxycholecalciferol; LRTI, lower respiratory tract infection; RSV, respiratory syncytial virus.



a. mean plasma 25(OH)D concentration 82 nmol/L.

b. 95% confidence interval: 1.6-24.9; *P* = .01.

## Reduced risk of Respiratory Tract Infection Meta-analysis from RCT—Martineau et al 2017

- Objective: assess overall effect of vitamin D supplementation on risk of acute respiratory tract infection
- IPD n=10,933; 0 to 95 years of age
  - Protective effects in those receiving daily or weekly vitamin D
  - Protective effects stronger with baseline 25(OH)D levels <25 nmol/L (adjusted odds ratio 0.30, 0.17 to 0.53) than with baseline 25(OH)D levels ≥25 nmol/L (adjusted odds ratio 0.75, 0.60 to 0.95; P for interaction=0.006)</p>
- Conclusion: Vitamin D supplementation protected against and reduced risk of acute respiratory tract infection.

IPD, individual participant data; 25(OH)D, 25-hydroxyvitamin D.



## Assessing Critical Processes During Neurodevelopment

- Vitamin D is a key nutrient for supporting brain and neurodevelopment<sup>[1],[2]</sup>
- Tofail et al 2019<sup>[3]</sup> study in Bangladesh (n=265) found higher levels of D
  - Positive association for temperament, language, and behavior
  - No change in cognitive and motor development
  - Despite adequate sunlight-exposure, 1:4 infants of slum-community suffer from subclinical D deficiency <50 nmol/L</li>
  - Highlights early-detected extraskeletal neurobehavioral role of D
- More clinical studies needed of D deficiency on neuro-behavioral outcomes in children<sup>[4]</sup>



<sup>2.</sup> Pai UA, et al. Clin Epidemiol Global Health. 2018;6:155-159.

<sup>3.</sup> Tofail F, et al. PLOS One. 2019;14:e0221805.

<sup>4.</sup> Mutua AM, et al. Wellcome Open Res. 2020;5:28.

## Developing Proper Vitamin D Supplementation Plans

Importance of supplements during pregnancy, lactation and for breastfed, partially breastfed, and bottle-fed infants



### Measuring Serum 25(OH)D Status

- Importance of screening
- Levels for achieving bone health vs immune health may differ
- Estimates of D requirements vary
  - Depends on sun exposure and standards defining a deficient state
  - Depends on chronic conditions and BMI





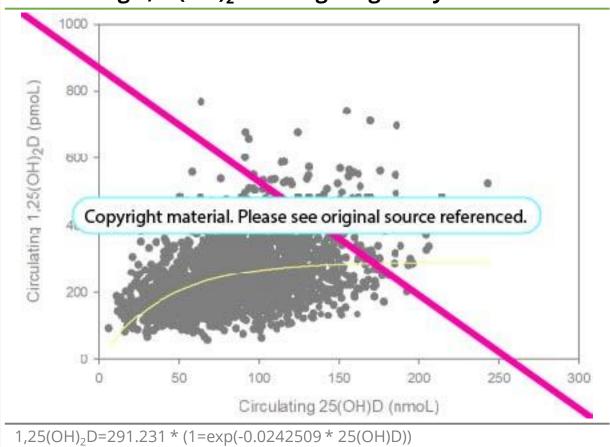
## **Supplements During Pregnancy and Lactation**

- Exclusively breastfed infants at risk if vitamin D supplementation is lacking and sun exposure is limited
- Dawodu et al 2014; n=120 breastfeeding mother-infant pairs, followed up to 1 yr
- AAP recommends infants <6 mos limit exposure to sunshine</li>
- At 26 and 52 weeks of age, winter/spring birth season and weekly hours of sun exposure are major determinants of D status
- When sunlight exposure is limited, vitamin D supplementation of breastfeeding mothers and infants is needed to improve D status

AAP, American Academy of Pediatrics.



## Vitamin D Supplementation During Pregnancy


- Hollis et al 2011 study, n=350; women with singleton pregnancy at 12–16 weeks' GA received 400, 2000, or 4000 IU vitamin D<sub>3</sub>/day until delivery
- Primary outcome: maternal/neonatal circulating 25(OH)D at delivery
  - Secondary outcomes: 25(OH)D ≥80 nmol/L achieved, and 25(OH)D concentration required to achieve maximal 1,25(OH)<sub>2</sub>D production
- Conclusion: Vitamin D supplementation of 4000 IU/day for pregnant women was safe and effective regardless of race, while current estimated average requirement was comparatively ineffective at achieving adequate circulating 25(OH)D, especially in African Americans



## Kinetic Reaction Graph of 25(OH)D and 1,25(OH)<sub>2</sub>D

- 25(OH)D had direct influence on 1,25(OH)<sub>2</sub>D levels throughout pregnancy (p<0.0001)</li>
  - Does not occur during any other time during lifespan
- First Order becoming Zero Order Kinetics Saturation Curve:
  - Inflection point at 40 ng/mL (100 nmol/L) 25(OH)D
  - Level required to optimize 1,25(OH)<sub>2</sub>D production

Figure. Relationship of Circulating 25(OH)D on Circulating 1,25(OH)<sub>2</sub>D During Pregnancy



25(OH)D 25-hydroxycholecalciferol; 1,25(OH)<sub>2</sub>D 1,25-dihydroxyvitamin D



# Supplemental Vitamin D Recommended for Partially Breastfed and Bottle-Fed Infants

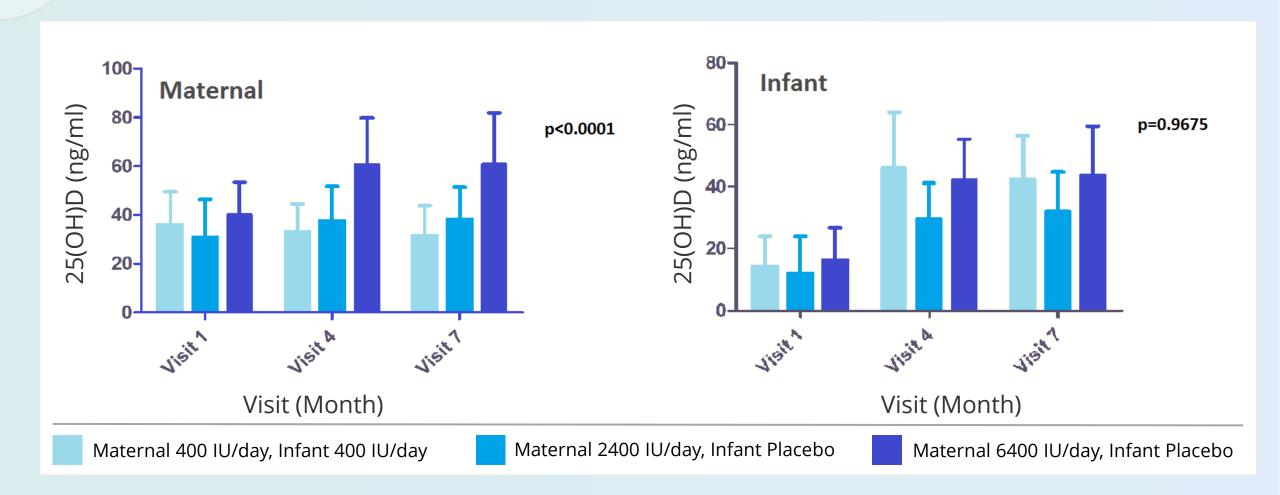
- At risk for osteopenia if supplements are not given
- If Mom is deficient in pregnancy and is not taking supplements, this can manifest in weeks after delivery
  - Deliveries later in winter or early spring seeing the most profound effects
- Can manifest as fractures
  - Younger babies X-rays don't help; they may or may not show fractures during rapid bone remodeling and growth
- AAP recommends all breastfed infants receive vitamin D supplementation starting within the 1st few days after delivery

AAP, American Academy of Pediatrics.



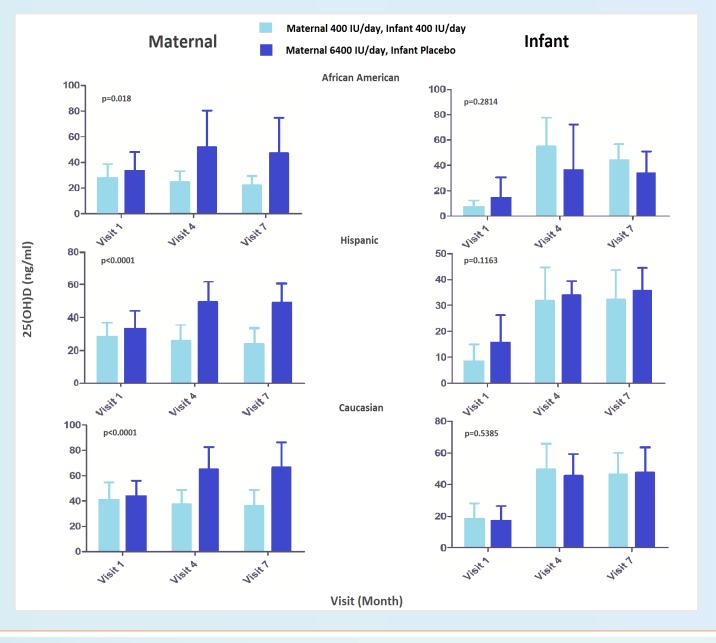
# Supplements During Lactation: NICHD Vitamin D Lactation Study

- Objectives: assess safety and effectiveness of maternal D supplementation of 2,400 or 6,400 IU/day alone compared with maternal and infant supplementation of 400 IU/day (the current standard of care)
- Maternal vitamin D<sub>3</sub> supplementation with 6,400 IU per day alone compared to maternal and infant supplementation with 400 IU per day
- N=334 (final n=95), exclusively lactating women in Charleston, SC and Rochester, NY
- Infants ≥35 weeks' gestation and in good general health


NICHD, National Institute of Child Health and Human Services.



#### Methods – Hollis 2015


- Fully lactating women and their infants at 1-month postpartum living in Charleston, SC and Rochester, NY participated
- Women were randomized to 1 of 3 treatment groups, substratified by race initially:
  - Control (400 IU vitamin D/day) or 2,400 or 6,400 IU vitamin D<sub>3</sub>/day for 6 months
- Infants of Control mothers received 400 IU/day, while infants of 2,400 and 6,400 IU groups received placebo
- Primary outcome measure was 25(OH)D concentration at 7 months postpartum in both mother and infant
- Maternal and infant serum calcium and maternal urinary calcium: creatinine ratios were monitored monthly
- Participants and study team were blinded to treatment







Circulating 25(OH)D of Mother and Infant by Race/Ethnicity as a Function of Supplementation





## **Supplements During Lactation – Hollis 2015**

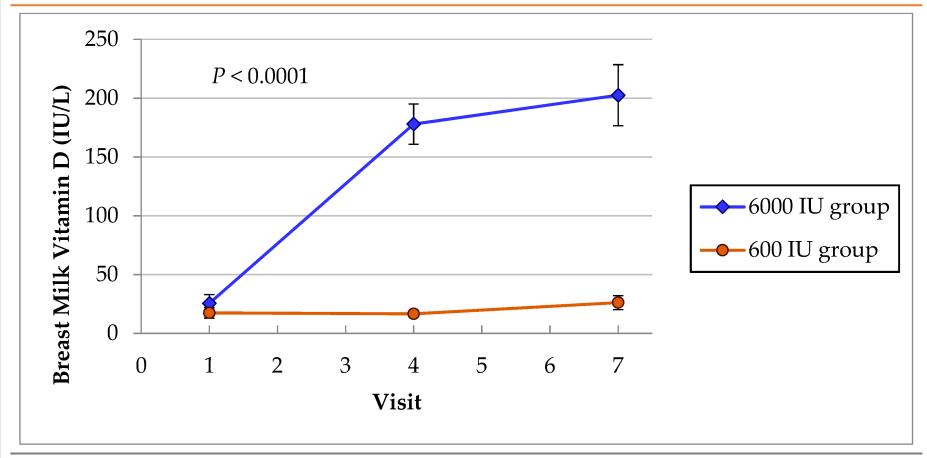
- Conclusion: Maternal D<sub>3</sub> at 6,400 IU/day alone without infant supplementation safely improved maternal D status during 6 months of full lactation and was equivalent to infant supplementation of 400 IU/day in achieving infant vitamin D sufficiency.
- These findings have implications for D supplementation recommendations during lactation.



### **Supplements During and After Lactation**

- If mother stops breastfeeding, or is formula feeding, and continues taking 6,000 IUs/day, this was shown to be safe for up to 6 months
- Not only safe for lactating women but also formula-feeding mothers and after lactation ceases




### **Supplements During Lactation – Dawodu 2019**

- Confirmatory RCT by Dawodu et al 2019; n=95
- Objective: Exclusively breastfeeding mother-infant pairs with high prevalence of D deficiency; compared effect of 6-month postpartum D<sub>3</sub> maternal suppl of 6,000 IU/day alone with maternal suppl of 600 IU/day plus infant suppl of 400 IU/day of BF infants in Doha, Qatar
- Conclusion: Maternal 6,000 IU/day D<sub>3</sub> suppl alone safely optimizes maternal D status, improves milk vitamin D to maintain adequate infant serum 25(OH)D.

BF, breast feeding; RCT, randomized controlled trial



Figure. Very significant interaction between the milk vitamin D during intervention



Breast milk vitamin D showed significant interactions between the groups. Mothers in 6,000 IU group had substantial higher mean D milk content of 202 IU/L compared with 26 IU/L in mothers in the 600 IU group at visit 7 (p < 0.0001).



#### Vitamin D Recommended Infant Intake

- Supplements needed for exclusively breastfed infants
  - Human milk supplies an inadequate amount of D to nutritionally support exclusively breastfed infant when mother is deficient
  - Human breastmilk alone is antirachitic at 5–80 IU/L when mother is vitamin D deficient; if she is sufficient (25(OH)D >40–50 ng/mL), her milk antirachitic activity increases to 400 IU vitamin/L
  - Acute in the Black population (Hollis et al 2015)
- Al for infants 400 IUs (10 mcg)/day beginning within days of birth to <12 mos</li>
- RDA for 12–21 mos is 600 IU (15 mcg)/day

Al, adequate intake; RDA, recommended daily amount.



#### Infant Formula

 Most formulas contain minimum 400 IUs/L of vitamin D

 Formula-fed infants require supplementation until the baby consumes min of 1,000 mL/daily of formula





## Complementary Foods at >6 Months of Age

- Understand which nutrients (eg, zinc, iron, vitamin D) are at risk in breastfed infant >6 mos to guide dietary recommendations
- Importance of magnesium with D metabolism



## US Fortification with Synthetic D<sub>2</sub> (ergocalciferol)

- D<sub>2</sub> (ergocalciferol) has 80% the potency of D<sub>3</sub> (cholecalciferol)
- Infant formula
- Milk
- Breakfast cereals
- Other foods
- Differences between cholecalciferol (D<sub>3</sub>) vs ergocalciferol (D<sub>2</sub>)



## **Key Takeaways**



Sufficient intake of vitamin D is needed for pregnant and lactating mothers as well as their infants during their first days of life and well into 1,000 days of life



Vitamin D deficiency is common among infants exclusively breastfed beyond 3–6 months if mother is D-deficient



Data suggest breast milk from vitamin D-sufficient mothers confers differential immune function in their infants

