Confronting the

Faculty Presenter

Alessio Fasano, MD

W. Allan Walker Chair of Pediatric Gastroenterology and Nutrition Professor of Pediatrics, Harvard Medical School
Professor of Nutrition, Harvard T.H. Chan School of Public Health Chief of the Division of Pediatric Gastroenterology and Nutrition Associate Chief for Research, Department of Pediatrics
MassGeneral Hospital for Children
Director of the Center for Celiac Research and Treatment
Director of the Mucosal Immunology and Biology Research Center
Massachusetts General Hospital - East

Faculty Disclosures

It is the policy of the Annenberg Center to ensure fair balance, independence, objectivity, and scientific rigor in all programming. All faculty participating in accredited programs are expected to identify and reference off-label product use and disclose any relationship with those supporting the activity or any others whose products or services are discussed.

Alessio Fasano, MD

Consultant	9 Meters, Milkyway
Consulting Agreement	Viome
Speakers Bureau	Mead Johnson Nutrition

Faculty have documented that this presentation will involve no discussion of unapproved or off-label, experimental, or investigational use.

Learning Objectives

Understand the allergic march and the role of gut microbiome dysbiosis as a critical factor underlying food allergy

Describe the prevalence, risk factors, clinical presentation, and diagnostic approach for cow's milk protein allergy (CMPA)

Apply novel strategies for management of CMPA, including new techniques to accelerate milk allergen tolerance

Overview of the Allergic March

Introduction to the Allergic March

$\frac{98}{8}$
The allergic (or atopic) march is the term for the natural history and progression of allergic diseases ${ }^{[1]}$

- Typical sequence of appearance of allergic diseases[2]

Atopic dermatitis (AD) \rightarrow food allergy \rightarrow allergic asthma \rightarrow allergic rhinitis

- Follows the developmental evolution of the skin, gastrointestinal (GI) tract, and respiratory tract ${ }^{[2]}$
- Provides a conceptual framework for research into the mechanisms, prevention, and treatment of allergic diseases ${ }^{[2]}$

Progression of the Allergic March

Some allergic diseases can remit in childhood, while others persist into adulthood. ${ }^{[1]}$

Proposed Sequence of Events Influencing the Allergic March ${ }^{[1,2]}$

: Atopic dermatitis (as result of genetic predisposition + environmental factors)

3) Stimulation of immune response

US Data for Allergic Diseases in Children ${ }^{[1,2]}$

a. 2016 data for asthma and 2021 data for other allergic conditions

What Is the Etiology of the Allergic March?

Physiology of the Immune Response \& Allergy

Broadly, allergens are defined as molecules that can bind to IgE antibodies. ${ }^{[1]}$

- IgE antibodies are immunoglobulin proteins that form complexes with antigens and trigger allergic responses ${ }^{[2]}$
- Sensitizing allergens are those that can induce allergenspecific IgE antibodies ${ }^{[1]}$
- Allergens typically enter the body via mucosal surfaces of either the airways or the Gl tract ${ }^{[1]}$
- Skin penetration is increasingly believed to play a role in the development of hypersensitivity to allergens

The Process of IgE-Mediated Allergen Sensitization ${ }^{[1]}$

1. First exposure to allergen
2. APCs capture and present processed allergen to CD4+ T cells, which become Th2 cells
3. Th2 cells stimulate B cells, which release allergen-specific IgE
4. Re-exposure leads to activation of IgE complexes, inducing degranulation of mast cells and basophils

Image licensed under a creative commons license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/. © Nuñez-Borque E et al. Front Immunol. 2022;13:836222.

Proposed Etiologic Drivers of the Allergic March ${ }^{[1-3]}$

Skin barrier dysfunction

- Damaged skin barrier
- Skin cell release of type 2 inflammatory molecules

Dysbiosis

- Depletion of commensal microbiota
- Decreased microbial diversity
- Colonization by microbes associated with food allergy

Rapid Expansion of Gut Microbiome-Allergy Research ${ }^{[1]}$

The Yin and Yang Between Tolerance and Immune Response Leading to Immune Disorders ${ }^{[1]}$

Role of the Healthy Gut Microbiome in Protecting Against Allergic Diseases

Symbiotic microbes have coevolved with humans to perform essential physiologic functions. ${ }^{[1]}$

Physiologic functions of a healthy gut microbiome:

- Metabolism of prebiotic fiber to short-chain fatty acids (SCFAs) ${ }^{[1]}$
- Protection against colonization by pathogens ${ }^{[1]}$
- Facilitation of antigen-experienced regulatory T cells (Tregs), which are important for suppression of type 2 inflammation ${ }^{[2]}$

Role of Dysbiosis in the Development of Allergic Diseases ${ }^{[1]}$

- Loss of protective SCFAs and dampening effects of Tregs
- Release of inflammatory molecules that promote Th2 cell activation
- Recruitment of immune cells, including mast cells and eosinophils

Factors Influencing the Development of the Infant Gut Microbiome

- Maternal microbiota
- Maternal diet
- Maternal stress
- Genetics

Perinata[[1,2]

- Mode of delivery (vaginal vs
Cesarean)
- Gestational age

Coser
 Postnata [[1,2]

- Feeding mode (breast milk vs formula)
- Geographic region
- Household and family environment
- Maternal diet
- Timing and types of complementary food
- Antibiotic exposure

Excessive and Inappropriate Inflammatory Process Associated to a Dysfunction of Intestinal Barrier:
 Loss of Mucosal Immune Homeostasis ${ }^{[1]}$

[^0]
Intestinal Permeability \& Food Allergy ${ }^{[1]}$

Literature Report on Zonulin and Chronic Inflammatory Diseases ${ }^{[1,2]}$

Disease	Model	Reference (PMID)	Disease	Model	Reference (PMID)
ADHD	Human	36786182	Irritable bowel syndrome	Human	31210949
Aging	Human	29896420	HIV	Human	29762690
Ankylosing spondylitis	Human	28069576	Long CovID	Human	1182544
Asthma	Human	34465387	MIS-C	Human	34032635
Autism	Human	36447452	ME/CFS	Human	35946099
Bipolar disorders	Human	37098666	Multiple sclerosis	Mouse	25184418
Celiac ddisease	Human	32162764	Multiple sclerosis	Human	31317818
Colitis/IBD (Crohn disease)	Human	34979917	Necrotizing enterocolitis (NEC)	Human	35279661
Colitis	Mouse	28423466	Nonalcoholic fatty liver disease	Human	32255299
Depressive disorders	Human	34320451	Non-Celiac gluten Sensitivity	Human	32060130
Food allergies	Human	36297068	Obesity/insulin resistance	Human	35666025
Gestational diabetes	Human	35994108	Sepsis	Human	23457771
Glioma	Human	19701495	Type 1 diabetes	Human	16644703
Glioma	Cells	23637756	Type 2 diabetes	Human	24347174

Overview of Cow's Milk Protein Allergy

Types of Cow's Milk Protein Allergy ${ }^{[1]}$

(The World Allergy Organization (WAO) uses the following definitions for cow's milk hypersensitivities:

- Cow's milk protein allergy (CMPA) is a hypersensitivity reaction caused by immune signaling
- IgE-mediated CMPA is a hypersensitivity reaction to cow's milk protein (CMP) mediated by IgE binding to Fce receptors on mast cells and basophils, leading to the rapid release of histamine and other inflammatory mediators
- Non-IgE-mediated CMPA is a hypersensitivity reaction to proteins in cow's milk that is caused by cell-mediated and other non-IgE mechanisms, leading to delayed-onset reactions
- Cow's milk intolerance is a nonallergic hypersensitivity

Comparison of IgE-mediated CMPA, Non-IgE-mediated CMPA, and Intolerance ${ }^{[1,2]}$

	IgE-mediated CMPA	Non-IgE-mediated CMPA	CMP intolerance
Mechanism of disease	Allergic hypersensitivity mediated by IgE	Allergic hypersensitivity mediated by immune cells	Nonallergic hypersensitivity
Organ system specificity	Broad, including oral, respiratory, cardiovascular, cutaneous, and gastrointestinal	Usually specific to Gl system	Usually specific to GI system
Timing of symptoms	Rapid (usually within minutes)	Delayed (hours or days)	Delayed (hours or days)
Examples	N/A	Food protein-induced allergic proctocolitis (FPIAP), food protein- induced enterocolitis syndrome (FPIES), food protein-induced enteropathy (FPIE)	Lactose intolerance

Symptoms of Mild-to-Moderate CMPA

Symptoms of IgE-Mediated CMPA ${ }^{[1]}$

Skin (≥ 1 almost always present)

- Pruritus
- Erythema
- Urticaria
- Angioedema
- Acute "flare" of AD

Gastrointestinal

- Vomiting
- Diarrhea
- Abdominal pain or colic

Respiratory (rarely occur in the absence of other symptoms)

- Acute rhinitis
- Acute conjunctivitis

Symptoms of Non-IgE-Mediated CMPA ${ }^{[1]}$

Gastrointestinal (most common)

- Persistent irritability
- Vomiting or reflux
- Food refusal or aversion
- Diarrhea or constipation
- Abdominal pain
- Blood or mucus in stools in otherwise well infant

Skin

- Pruritus
- Erythema
- Nonspecific rash
- Moderate, persistent AD

Note: These symptoms are exceedingly common in infants without CMPA, underscoring the importance of structured diagnostic evaluation ${ }^{[1,2]}$

Algorithm for Diagnosing CMPA in Infants ${ }^{[1]}$

Epidemiology of CMPA Among Infants \& Children ${ }^{[1]}$

CMPA is most common in infants and toddlers and often remits as children age.

Risk Factors for CMPA

Several early risk factors for CMPA have been identified:

- Family history for allergy ${ }^{[1]}$
- Breastfeeding extent and duration ${ }^{[1]}$
- Antibiotic exposure during pregnancy ${ }^{[2]}$
- Exposure to complementary foods before age 4 months ${ }^{[2]}$
- Presence of atopic dermatitis (higher risk for more severe disease) ${ }^{[3]}$

What About Breastfeeding and Allergies?

- Breastfeeding may be one of the most relevant factors affecting development of the newborn immune system ${ }^{1,2}$
- Bioactive compounds in human milk are immunomodulating (eg, TGF- β, HGF, cytokines)
- The Gl tracts of breastfed infants are colonized with favorable microbes that positively influence immune system development ${ }^{3}$

Breastfeeding and Prevention of CMPA: Data Remain Inconclusive

Although exclusive breastfeeding provides optimal infant nutrition and should be encouraged through 4-6 months of age, breastfeeding has not consistently been linked to the prevention of CMPA. ${ }^{[1-3]}$

- Despite inconsistent benefit for CMPA prevention, breastfeeding appears to be protective for atopic dermatitis ${ }^{[1,3]}$
- May also reduce the risk for wheeze and asthma ${ }^{[3]}$
- Breastfeeding remains a key component of optimizing the health of the immune system and gut microbiome in the developing infant ${ }^{[3]}$

Early Complementary Cow's Milk Formula Feeding for CMPA Prevention

CMP Hypersensitivity at 6 Months in RCT Comparing Cow's Milk

 Formula Ingestion or Avoidance Between 1-2 Months of Age ${ }^{[1]}$

In contrast with

continuous CMF exposure, intermittent

CMF exposure or discontinuation of CMF after early exposure increases the risk for CMPA.[2,3]

Early and continued cow's milk formula ingestion reduces the risk of CMPA without interfering with breastfeeding. ${ }^{[1-3]}$

Impact of Formula Type on CMPA

- Soy formulas and formulas made from other mammals (eg, goat) are not recommended for allergy prevention ${ }^{[1,2]}$
- Data regarding hydrolysate formulas for allergy prevention are mixed ${ }^{[2-4]}$
- Differences across individual formulas preclude broad recommendations by formula type
- For infants at high risk for allergic diseases, hydrolyzed formulas may be considered on a per-product basis

CMPA Prevention Summary

- One of the major risk factors for CMPA is dysbiosis, which can be mediated by mode of delivery, feeding choices, and other environmental and genetic factors
- Although breastfeeding provides optimal infant nutrition, data are inconclusive for a relationship between breastfeeding and the prevention of CMPA
- Early and ongoing cow's milk formula feeding can reduce the risk of CMP hypersensitivity without interfering with breastfeeding
- Data regarding the effects of hydrolysate formula on CMPA risk are mixed
- Most healthy infants can be fed intact-protein cow's milk formula without affecting allergy risk

Novel Strategies for CMPA Management \& Induction of Tolerance

CONTINUING EDUCATION FOR CLINICIANS

CMPA Management: Dietary Avoidance

E

Dietary avoidance is the conventional management approach for CMPA. ${ }^{[1-4]}$

- Continued breastfeeding should be encouraged
- For infants receiving formula, intact cow's milk protein formula should be avoided
- Extensively hydrolyzed formulas are recommended
- For those eating complementary foods, special attention to adequate calcium intake is recommended

Maternal elimination diets are not generally necessary; for 99\% of infants, breast milk of a woman consuming cow's milk does not contain sufficient milk allergens to trigger allergy. ${ }^{[5]}$

Formula Choices for Cow's Milk Allergy

Formulas not recommended for CMPA:[2]
 - Standard cow's milk formula
 - Goat milk-based formula
 - Other mammal milks and formulas
 - A2 formula
 - Soy formula (non-IgEmediated CMPA)

AAP-Recommended Substitutions for Cow's Milk Formula in Patients With IgE-mediated CMPA ${ }^{[1,2]}$

Allergy	Age	Formula type	
		First choice	Second choice
IgE-mediated CMPA	<6 months	Extensively hydrolyzeda	Amino acid-based
	>6 months	Extensively hydrolyzeda OR Soy	Amino acid-based
	All ages	Extensively hydrolyzeda	Amino acid-based

CMP Reintroduction \& Tolerance Induction

- Most children with CMPA "outgrow" their allergy (ie, develop tolerance to CMP) by age 5 years ${ }^{[1]}$
- Time to tolerance varies and may be more rapid with non-IgE- vs IgE-mediated CMPA
- Guidelines often recommend trialing reintroduction of baked milk in 6- to 12-month intervals to evaluate for tolerance ${ }^{[1,2]}$
- Increasingly, there is a focus on various strategies for increasing tolerance by modulating the immune response through home reintroduction and/or immunotherapy ${ }^{[2]}$

Reintroduction With "Food Ladders" to Induce CMP Tolerance ${ }^{[1]}$

Food ladders are home-based strategies for dietary advancement that slowly increases allergen exposure. ${ }^{[1]}$

- Begins with introduction of heavily heat-treated foods (eg, baked goods) and progresses through cooked foods (eg, pancakes) to less-processed products (eg, soft cheeses, cow's milk formula) ${ }^{[1]}$
- Intended to help with the development of natural tolerance ${ }^{[1]}$
- Largely safe in appropriately selected patients with non-IgE-mediated food allergies ${ }^{[1]}$
- Effectiveness decreases as CMP-specific IgE levels increase ${ }^{[2]}$

iMAP Milk Ladder for Infants With Mild or Moderate Non-IgE-Mediated CMPA ${ }^{[1, a]}$

Probiotics \& CMPA Management

Probiotics are "live microorganisms which when administered in adequate amounts confer a health benefit on the host."[1]

- Most commonly used genera in commercial products: Lactobacillus and Bifidobacterium ${ }^{[2,3]}$
- Abundant in healthy breastfed infants
- Associated with reduced intestinal permeability and improved immune modulation
- Infants with CMPA often have lower levels of these bacteria in their gut microbiomes ${ }^{[2]}$

CMP Tolerance With the Addition of Lactobacillus rhamnosus GG (LGG) to Formula ${ }^{[1]}$

Induction of Oral Tolerance in Infants With OFC-Confirmed IgE-Mediated CMPA at Ages 12, 24, and 36 Months, by Formula Type ${ }^{[1]}$

In addition to improved CMP tolerance, fewer allergic conditions and fewer functional GI disorders developed in infants fed formula supplemented with LGG. ${ }^{[1,2]}$

Oral Immunotherapy for IgE-Mediated CMPA

- Oral immunotherapy (OIT) can induce desensitization to CMP but does not typically "cure" CMPA (ie, sustained unresponsiveness) ${ }^{[1,2]}$
- Not routinely recommended in patients with CMPA due to the risk for anaphylaxis and Gl adverse effects
- Recommendations for CMP OIT:[1]
- Consider for patients with confirmed IgE-mediated CMPA who value the ability to ingest controlled amounts of milk more than the potential risks
- Consider use of omalizumab (anti-IgE antibody) when starting OIT
- Avoid use in patients who cannot tolerate baked milk

OIT \neq Food Ladder

Food ladders introduce allergens in forms that are likely to be tolerated by patients. ${ }^{[2]}$

OIT involves ingestion of allergens in forms known to cause allergic reactions. ${ }^{[2]}$

Key Takeaways

The allergic march represents the natural history of allergic diseases, beginning with AD and potentially progressing to asthma.

Gut dysbiosis, skin barrier dysfunction, and other genetic and environmental factors contribute to the progression of the allergic march.

Extensively hydrolyzed formulas are typically the first-line approach for formula-fed infants with CMPA.

CMPA has conventionally been managed through avoidance and periodic reintroduction to test for tolerance; food ladders and/or OIT can help to induce desensitization and/or tolerance.

[^0]: Image components licensed under Creative Commons License (CC BY 3.0). https://creativecommons.org/licenses/by/3.0/. © Servier Medical Art. https://smart.servier.com/.

 1. Sturgeon C, Fasano A. Tissue Barriers. 2016;4(4):e1251384.
