Supporting Neurodevelopment With Brain-Building Nutrition

> Presented by John Colombo, PhD, and Magnus Domellöf, MD, PhD

ANNENBERG CENTER FOR HEALTH SCIENCES AT EISENHOWER Imparting knowledge. Improving patient care.

This activity is supported by an educational grant from **Mead Johnson Nutrition.**

Faculty Presenters

John Colombo, PhD

Professor of Psychology Director, Schiefelbusch Institute for Life Span Studies University of Kansas Lawrence, Kansas

Magnus Domellöf, MD, PhD

Professor of Pediatrics Umeå University Senior Consultant (attending) Physician Department of Clinical Sciences Umeå, Sweden

Faculty Disclosures

It is the policy of the Annenberg Center to ensure fair balance, independence, objectivity, and scientific rigor in all programming. All faculty participating in accredited programs are expected to identify and reference off-label product use and disclose any relationship with those supporting the activity or any others whose products or services are discussed.

John Colombo, PhD

Advisory Board	Ingenuity Foods, Nestlé
Consultant	Nestlé
Research Support	Nestlé

Magnus Domellöf, MD, PhD

Consultant	Fresenius Kabi Deutschland GmbH
Research Support	Arla Foods Ingredients
Speakers Bureau	Baxter AB, Danone Nutricia, Nestlé Nutrition Institute

Faculty have documented that this presentation will involve discussion of unapproved or off-label, experimental, or investigational use.

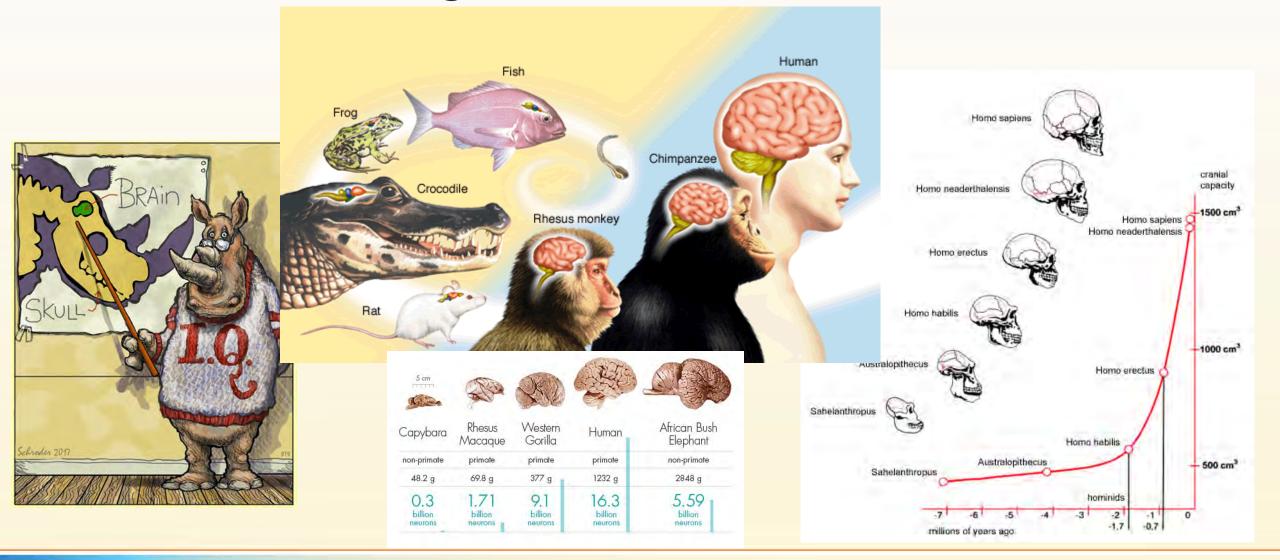
Learning Objectives

By participating in this education, you will better:

Recognize the impact of nutrition on brain growth and neurodevelopment

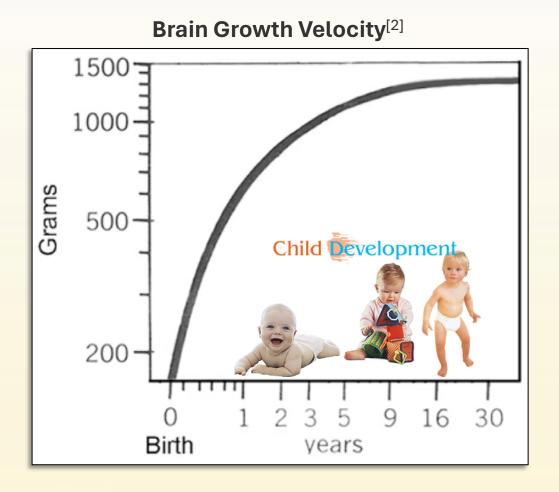
Identify key components of the structure, composition, and functionality of MFGM in breast milk and its significance to infant nutrition

Support clinicians' confidence in their ability to communicate the clinical benefits of infant formula with MFGM in early infant growth and development



The First 1,000 Days: a Critical Period of Growth and Development

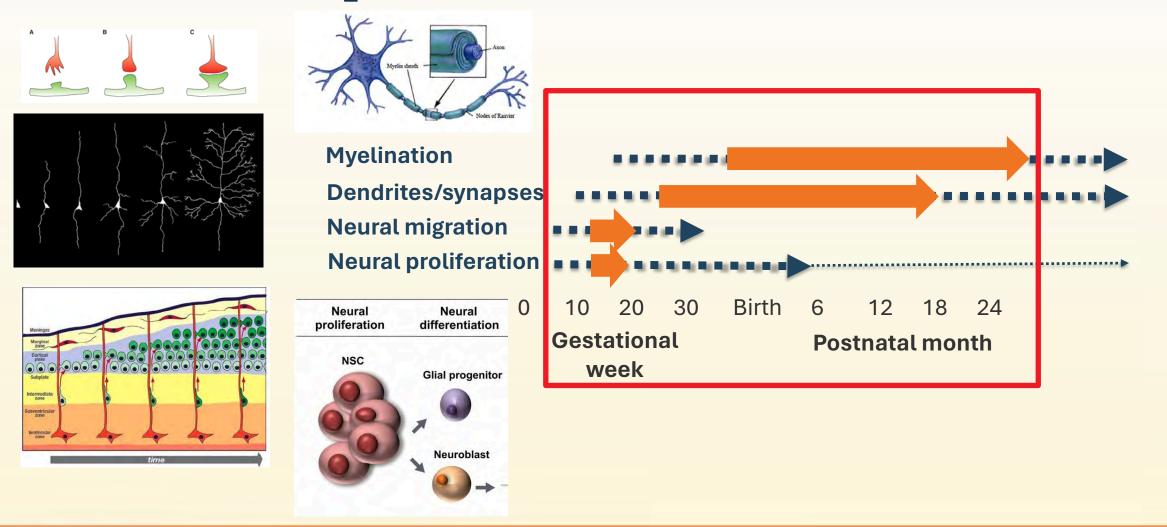
Magnus Domellöf, MD, PhD



Humans Have Big Brains

Dobbing J, Sands J. *Early Hum Dev.* 1979;3(1):79-83. Image left: ©2017, Bill Schroder, Your Inner Rhino.

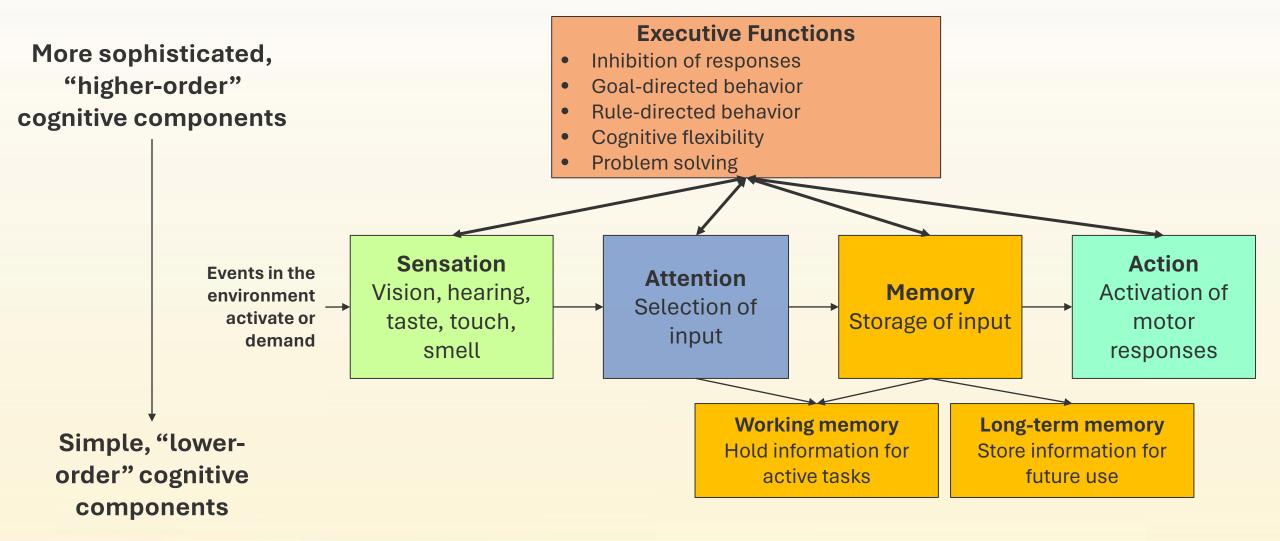
Brain Growth Spurt^[1]


The brain is the fastest-growing organ in infants and toddlers.^[2]

Age	Average weight
Birth	400 g
3 years	1200 g
Adult	1400 g

[1]. Dobbing J, Sands J. *Early Hum Dev.* 1979;3(1):79-83. [2]. University of Utah. Updated May 2020. https://neurologicexam.med.utah.edu/pediatric/html/dev_anatomy.html. Image used under a Creative Commons license (CC-BY-NC-SA). ©2020, the Authors.

The First 1,000 Days: Extremely Important for Brain Development


[1]. Save the Children Fund. Food for Thought. 2013. https://www.savethechildren.org.uk/content/dam/global/reports/hunger-andlivelihoods/food-for-thought.pdf. [2]. Gilmore JH et al. Nat Rev Neurosci. 2018;19(3):123-137. [3]. Shankle WR et al. Pediatr Dev Pathol. 1999;2(3):244-259. [4]. Zhao X et al. Front Hum Neurosci. 2021;15:616132.

Assessing and Measuring Developmental Outcomes

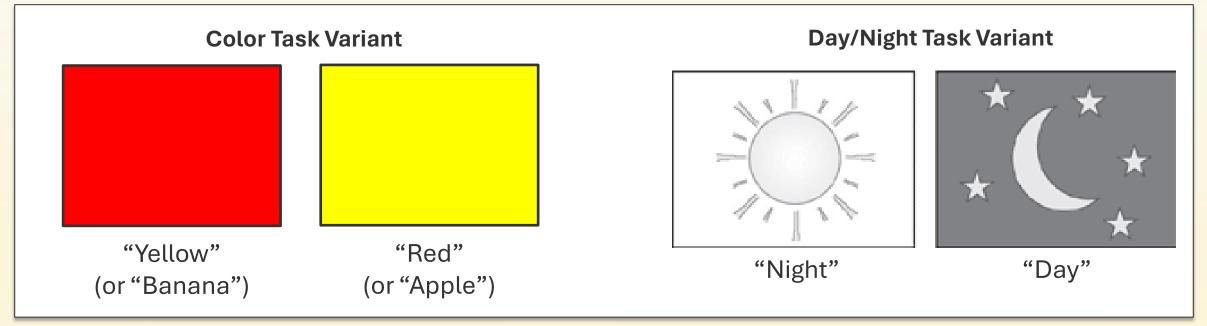
John Colombo, PhD

Specific Cognitive Functions

Developmental Course of Cognitive Functions

Clinical Trial Outcomes to Measure Brain Development

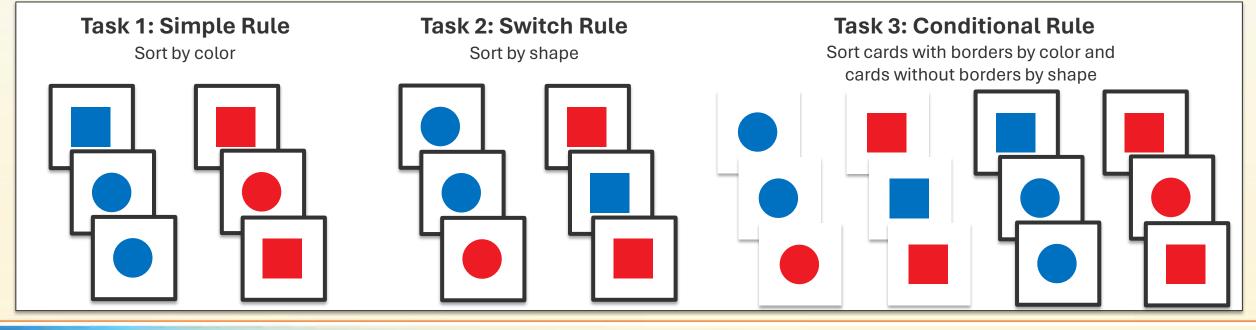
When designing a clinical trial, identifying outcomes to effectively evaluate the treatment is critical.


Options for measuring neurodevelopment include:

- Screening assessments
- Parent report measures (questionnaires)
- Standardized global developmental measures
- Tests of specific cognitive skills

Measuring Executive Function: Modified Stroop Task^{[1],[2]}

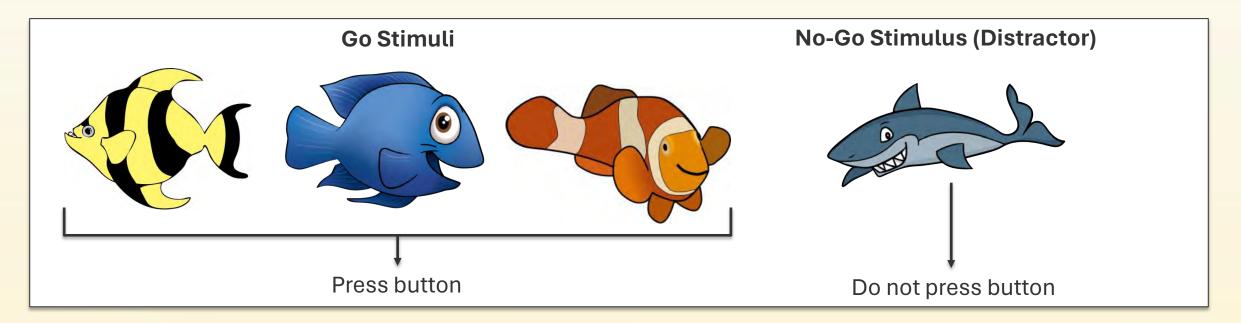
- **Test:** asks children to respond to a stimulus based on a nonintuitive rule
- Cognitive process measured: inhibitory control, rule-learning and strategy, and working memory
- Age group: ≥30 months



[1]. Colombo J et al. Am J Clin Nutr. 2019;109(5):1380-1392. [2]. Colombo J et al. J Pediatr. 2023;261:113483.

Measuring Executive Function: Dimensional Change Card Sort (DCCS) Task^{[1]-[3]}

- **Test:** asks children to sort cards into boxes based on a specific characteristic (eg, color) and then asks them to *switch* and sort cards based on a different characteristic (eg, shape) and then again based on a conditional rule
- Cognitive process measured: rule-learning and cognitive flexibility
- Age group: ≥30 months

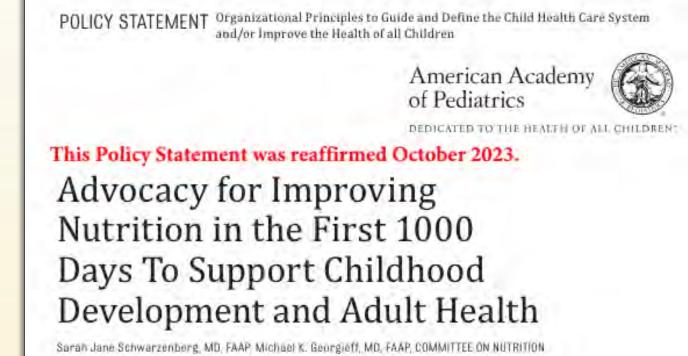


[1]. Colombo J et al. *Am J Clin Nutr.* 2019;109(5):1380-1392. [2]. Colombo J et al. *J Pediatr.* 2023;261:113483. [3]. Zelazo PD. *Nat Protoc.* 2006;1(1):297-301.

Measuring Executive Function: Go/No-Go Task

- **Test:** asks children to perform a quick motor response when specific stimuli are displayed (ie, "go" stimuli) and withhold this response for other stimuli (ie, "no-go" stimuli or distractors); often used in conjunction with event-related brain potential (ERP) recording^[1]
- Measures: inhibitory control^[1]
- Age group: usually ≥ 60 months, but has been used in younger children with some success^[2]

[1]. Meule A. Front Psychol. 2017;8:701. [2]. Holmboe K et al. PLoS One. 2021;16(12):e0260695.


Human Milk: the Model for Optimal Early Nutrition

Magnus Domellöf, MD, PhD

Nutrition, Brain Development, and the Role of Clinicians

- The American Academy of Pediatrics (AAP) advocates for improving nutrition during the first 1000 days to support optimal development
- Optimizing nutrition requires an understanding of the "complex interplay" of the various nutrients that contribute to brain development

Nutrition and Brain Development

	Proliferation	Migration	Arborization	Synapse formation	Myelination
Protein & energy	Х	Х	Х	Х	Х
Fatty acids	Х		Х	Х	Х
Iron	Х		Х	Х	Х
lodine	Х	Х	Х	Х	Х
Zinc	Х		Х	Х	
Choline	Х			Х	
B vitamins	Х		Х	Х	Х

Breastfeeding: the Gold Standard for Infant Nutrition

- Health benefits of breastfeeding include:
- Reduced risk of infections
- Improved brain development

Meek JY et al. *Pediatrics*. 2022;150(1):e2022057988. Image credit: VALUA VITALY via shutterstock

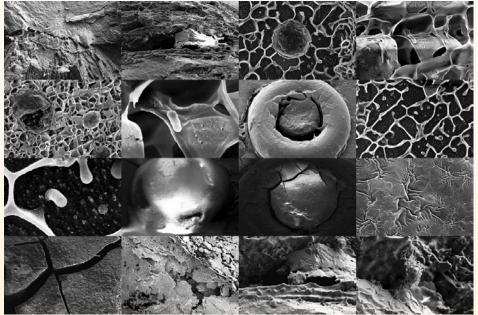
Breastfeeding and IQ

- Compared with formula-fed term infants, breastfed infants have higher IQ scores at (pre)school ages
 - Differences of about 3 to 5 points
- Causality of breastfeeding difficult to prove in observational studies...

Breastfeeding and IQ (Continued)

- Meta-analysis of 17 studies, adjusting for multiple confounders
 - Most studies from high-income countries
- Breastfed subjects achieved higher IQ
 - Mean difference, 3.4 points (95% Cl, 2.3-4.6 points)
- Similar effects in large and small studies
- Still significant effect in studies controlling for maternal IQ
 - Mean difference, 2.6 points (95% CI, 1.2-4.0 points)

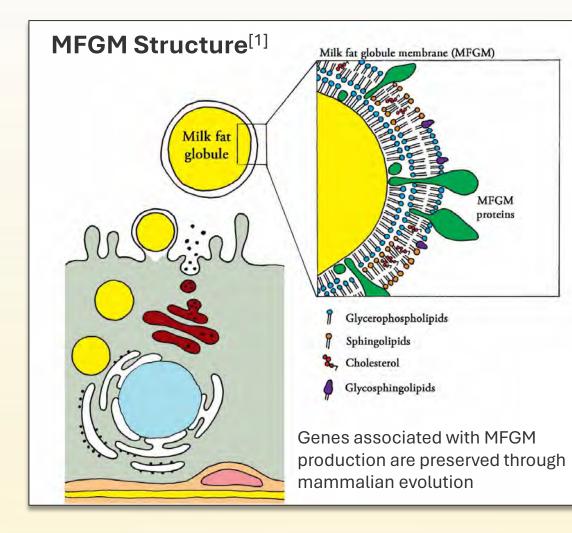
Differences in Cognitive Development Scores With Breastfeeding


P value
-
<.001
.02
<.001
<.001
<.001
<.001
<.001
.06
<.001
<.001

Breast Milk Is a Highly Complex Biological Tissue

- Oligosaccharides
- Nonprotein nitrogen
- Nucleotides
- Complex lipids
- Growth factors
- Hormones
- Cytokines

- Bioactive peptides
- Enzymes
- Immunoglobulins
- Leucocytes
- Bacteria
- Exosomes
- Stem cells



Bioactive Components of Breast Milk

- Components having a health effect beyond their purely nutritional contribution (eg, energy and macronutrient intakes)
- Bioactive components may improve immune function, promote neurodevelopment, and/or prevent morbidities

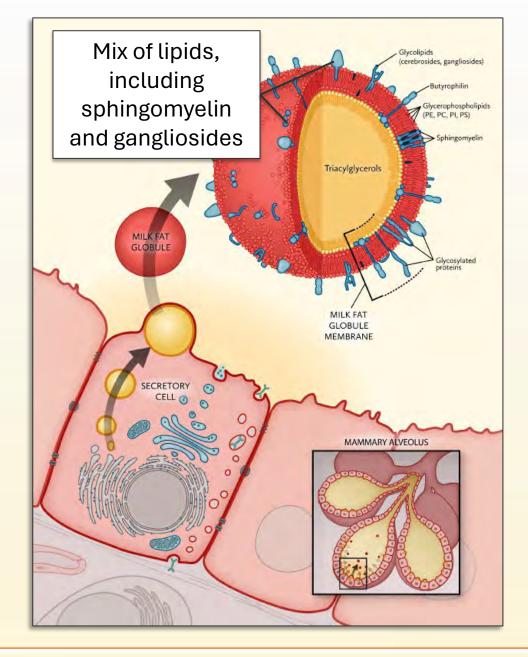
Milk Fat Globule Membrane (MFGM)

Brain Function^[2]

- Choline
- Sphingomyelin
- Gangliosides
- Cholesterol
- Sialic acid
- Inositol
- Cerebrosides

Immune Defense^[2]

- Mucins
- Butyrophilin
- Lactadherin
- CD14
- TLR1
- TLR4
- Xanthine oxidase


MFGM: Structure and Functions

John Colombo, PhD

Milk Fat Globule Membrane (MFGM) Overview

- Three-layer membrane of polar lipids, glycolipids, and proteins
- Surrounds triacylglycerol-rich milk fat globules
- Secreted by mammalian epithelial cells through exocytosis

Potential Impact of MFGM Supplementation on the Brain-Immune-Gut Axis and Neurodevelopment

Sphingomyelin and glycosphingolipids (gangliosides) are highly concentrated in the brain, contributing to synaptogenesis and myelination.^[2]

Brain^[1]

- Improved cognitive scores
- Improved developmental and attention scores
- Improved social and emotional behavior scores
- Improved short-term memory
- Fewer behavioral and affective disorders

Immune^[1]

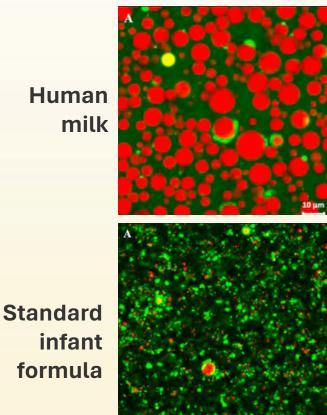
- Reduced risk of otitis media
- Fewer upper respiratory infection, cough, and diarrhea cases
- Lower levels of IL-2 and IL-17A
- Cytokine profile more similar to breastfed infants

Gut^[1]

- Fewer incidences of diarrhea
- Fewer incidences of bloody diarrhea

Microbiome^[1]

- Improved gut microbial activity and function
- Lower prevalence of otitis media-related bacteria


Potential Benefits of MFGM Supplementation in Infant Formula

John Colombo, PhD

Differences Between Lipids in Human Milk and Standard Infant Formula

Confocal Microscopy Images of Fat Droplets Showing Lipids (Red) and Proteins (Green)^[1]

Characteristics of Human Milk Fat Droplets^[2]

- High sphingomyelin content
- Dynamic across lactation stages
- Large fat globules (~5 µm)
- Phospholipid bilayer membrane

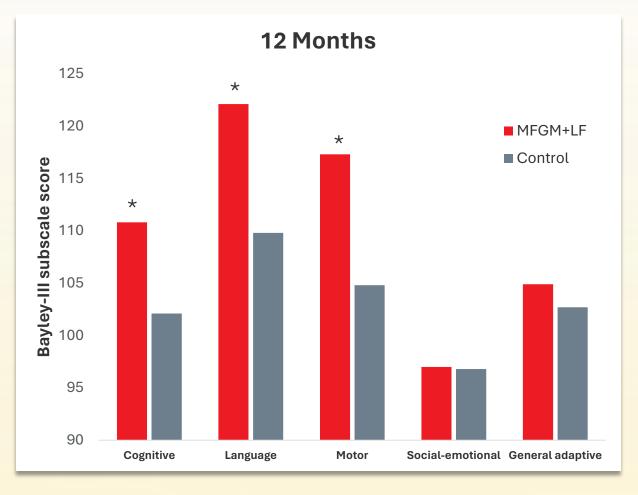
Characteristics of Standard Infant Formula Fat Droplets^[2]

- High phospholipid content
- High phosphatidylcholine content
- Small fat globules (~0.2 µm)
- No phospholipid bilayer membrane

[1]. Gallier S et al. Colloids Surf B Biointerfaces. 2015;136:329-339. Images used under a Creative Commons license (<u>CC BY</u>). © 2015, the Authors. [2]. Wei W et al. J Agric Food Chem. 2019;67(50):13922-13928.

Studying the Benefits of MFGM Supplementation of Infant Formula: the Lighthouse MFGM Clinical Trial

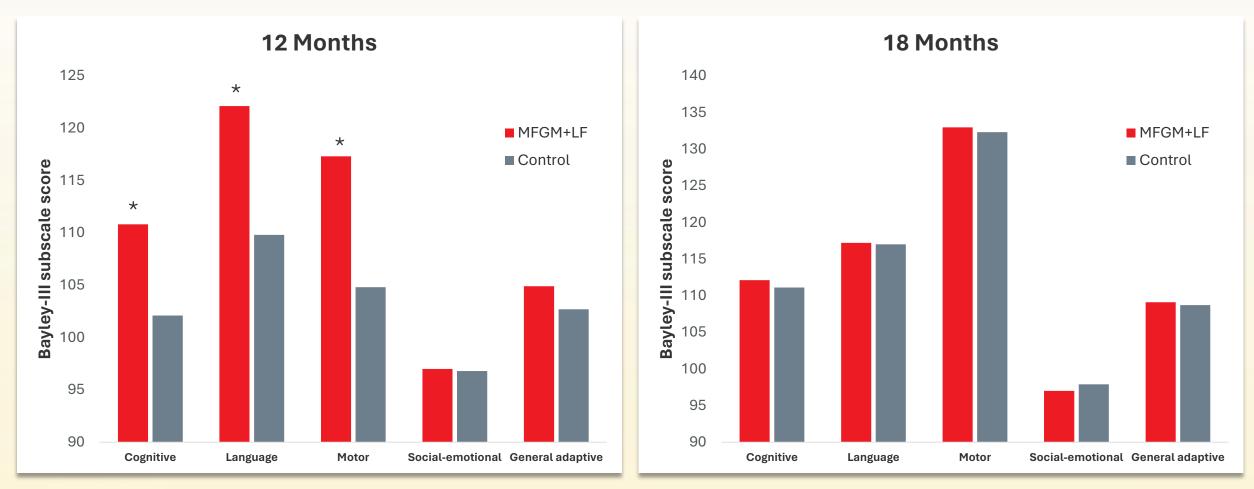
- Study design
 - Prospective double-blind randomized controlled trial (RCT)
 - Enrolled 451 infants and randomly assigned to 12 months of feeding with:
 - » Standard cow's milk-based formula (control)
 - » Standard cow's milk-based formula with added bovine MFGM (5 g/L) and lactoferrin (0.6 g/L) (MFGM+LF)
- **Primary outcome:** difference in Bayley Scales of Infant Development, 3rd edition (Bayley-III) cognitive composite scores at 12 months
- Secondary outcomes: tolerability/safety, growth/anthropometrics, and other measures of development



The Lighthouse MFGM Clinical Trial: Ages and Stages Questionnaire Outcomes

ASQ Domain Scores (Repeated Measures Analysis), Mean \pm SE									
Domains	Day 120		Day 180		Day 275		P value for	P value	
	Control (n = 187)	MFGM + LF (n = 187)	Control (n = 185)	MFGM + LF (n = 183)	Control (n = 167)	MFGM + LF (n = 166)	age*study group interaction	for study group	
Communication	49.1 ± 0.5	51.4 ± 0.5	50.8 ± 0.5	51.5 ± 0.5	51.5 ± 0.6	52.5 ± 0.6	.238	.010	
Gross motor	49.7 ± 0.6	52.3 ± 0.6	48.6 ± 0.6	49.5 ± 0.6	46.2 ± 0.7	47.1 ± 0.7	.299	.010	
Fine motor	46.6 ± 0.6	49.5 ± 0.6	52.0 ± 0.6	52.9 ± 0.6	53.4 ± 0.6	54.6 ± 0.6	.130	.002	
Problem solving	49.7 ±0.6	52.1 ± 0.6	49.5 ± 0.6	51.1 ± 0.6	51.9 ± 0.6	52.7 ± 0.6	.408	.003	
Personal/social	46.5 ± 0.6	50.2 ± 0.6	47.1 ± 0.6	48.4 ± 0.6	50.0 ± 0.6	51.0 ± 0.6	.032	<.001	

The Lighthouse MFGM Clinical Trial: Bayley-III Outcomes at 12 Months



*P <.001

Li F et al. J Pediatr. 2019;215:24-31.e8.

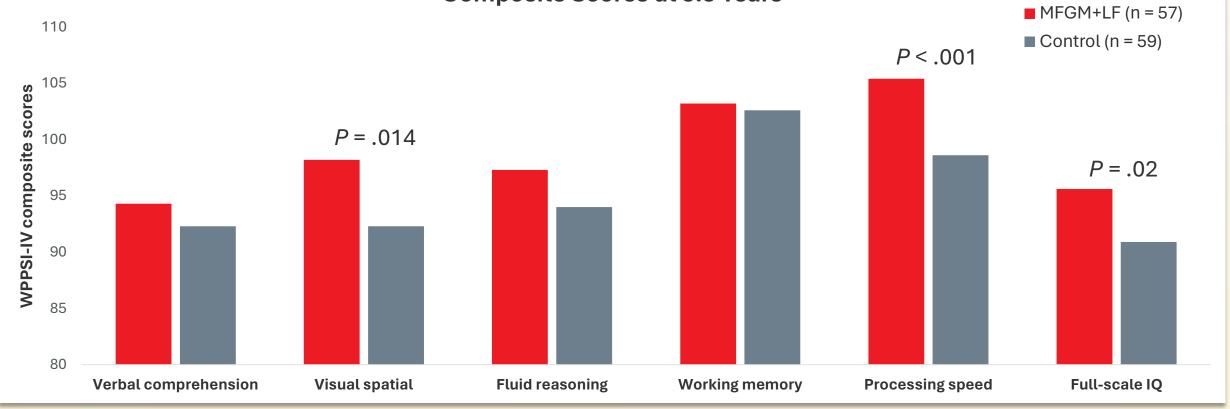
The Lighthouse MFGM Clinical Trial: Bayley-III Outcomes at 18 Months

*P <.001

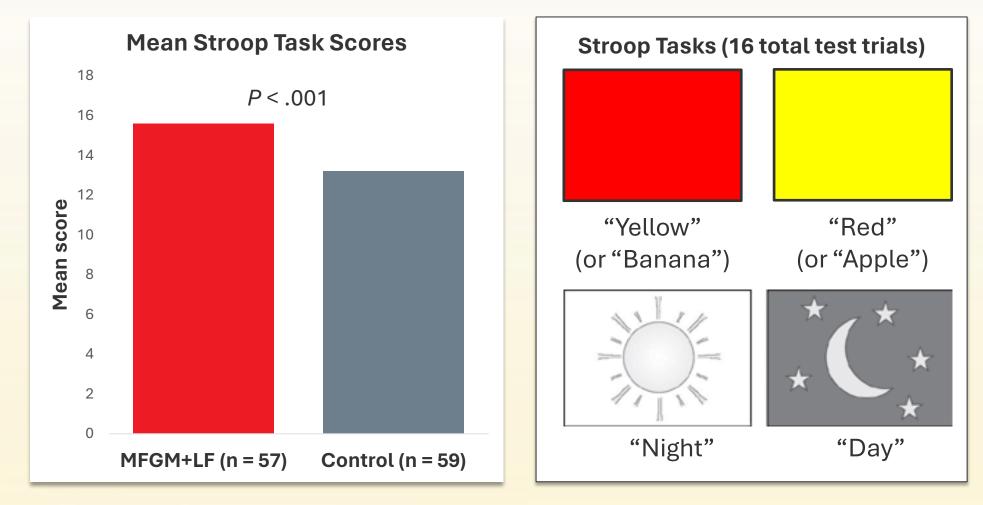
The Lighthouse MFGM Clinical Trial: Long-Term Follow-Up

• Follow-up study design

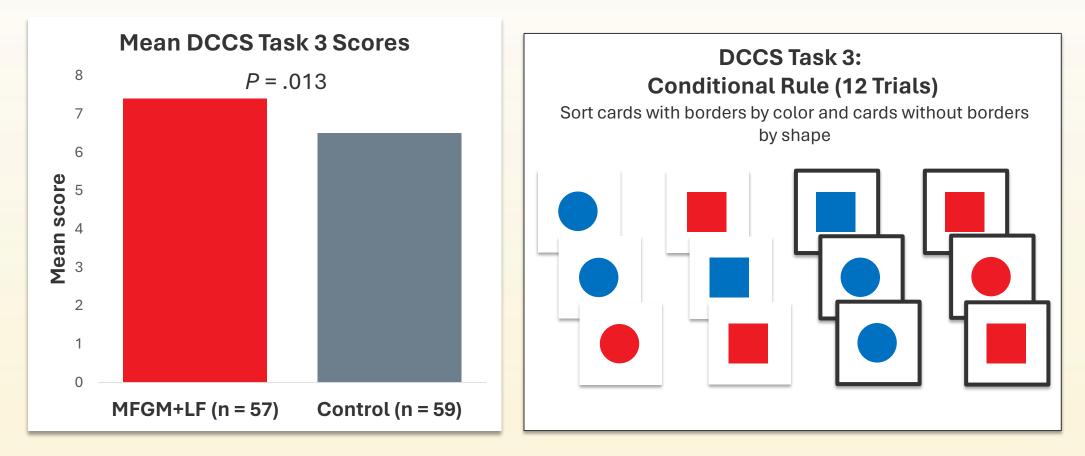
- Enrolled trial participants who completed 12 months of the assigned study feeding who were 5.5 years (±2 months) at the time of study testing
- 116 of 292 participants meeting eligibility criteria were enrolled
 - » No differences in demographic characteristics between those who did or did not participate in the follow-up study


Primary outcome measures

- WPPSI-IV Full-Scale IQ (a measure of overall intellectual ability)
- 5 primary WPPSI-IV indices (measures of the domain-specific abilities of verbal comprehension, visual spatial, fluid reasoning, working memory, and processing speed)


The Lighthouse MFGM Clinical Trial Long-Term Follow-Up: Outcomes at 5.5 Years

Mean Wechsler Preschool & Primary Scale of Intelligence 4th edition (WPPSI-IV) Composite Scores at 5.5 Years


The Lighthouse MFGM Clinical Trial Long-Term Follow-Up: Stroop Task at 5.5 Years

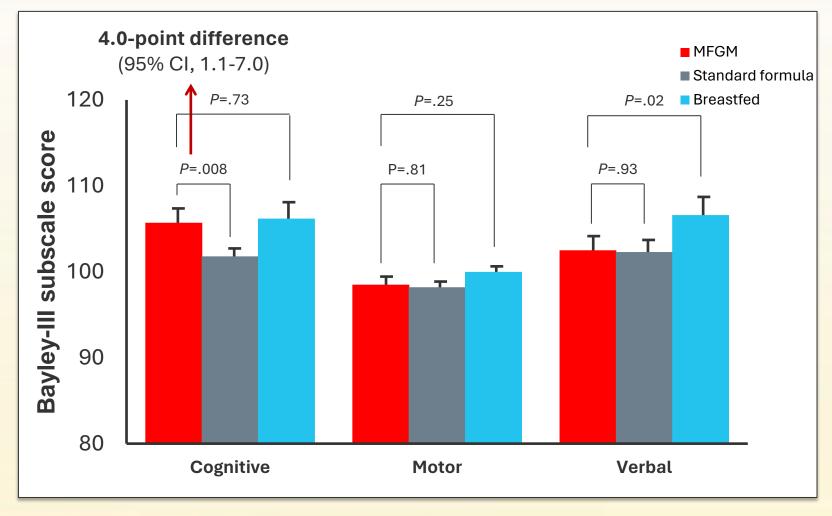
Colombo J et al. J Pediatr. 2023;261:113483.

The Lighthouse MFGM Clinical Trial Long-Term Follow-Up: DCCS Task at 5.5 Years

Note: There were no between-group differences in the DCCS task 1 (simple rule) or task 2 (switch rule) scores.

Other Potential Benefits of Supplementing Infant Formula With Bovine MFGM

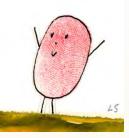
- Improvement in **adaptive behavior** at 12 months^[1]
- Reduction in **infection** rates^[2]
- Maintenance of intestinal barrier integrity^[2]
- Modulation of the **gut microbiome**^[3]



MFGM: Additional Data, Clinical Applications, and Ongoing Questions

Magnus Domellöf, MD, PhD

Swedish MFGM Study: Neurodevelopment at 12 Months



- Randomized, controlled study
- 160 healthy formula-fed infants were randomized to receive:
 - Standard formula until 6 months of age (n = 68)
 - Standard formula supplemented with MFGM (4% wt:wt) until 6 months of age (n = 73)
- A breastfed reference group was also recruited from the same hospital (n = 72)

Timby N et al. Am J Clin Nutr. 2014;99:860-868.

Promising Results From Our Swedish MFGM Study

- Improved cognitive scores at 12 months^[1]
- Reduced infections from 0–6 months, especially acute otitis media^[2]
- 6-year follow-up^[3]
 - No remaining effects on neurodevelopment
 - No anthropometric or metabolic effects

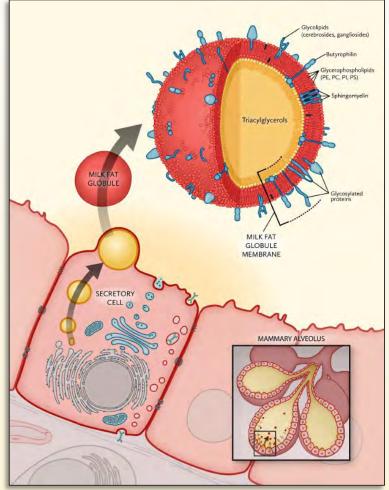
Country	Age	Ν	Intervention formula	Primary outcome	Results	Ref
China	0–12 mo	212	MFGM	Safety and tolerance	Safe	Jiang, 2022
Chile	4–12 mo	347	MFGM	Growth and safety	Safe	Jaramillo-Ospina, 2022
USA	0–12 mo	373	MFGM, low iron, low protein	Growth and tolerance	Safe	Hedrick, 2021
China	0–5 mo	386	MFGM	Infections	No effect	Li X, 2019
China	0–12 mo	212	MFGM	Neurodevelopment	Partly positive	Xia, 2021
China	0–12 mo	451	MFGM + lactoferrin	Neurodevelopment	Very positive	Li F, 2019
Spain	1–18 mo	170	MFGM, LCPUFAs, oligosaccharides, sialic acid, gangliosides, nucleotides and probiotics	Neurodevelopment	Partly positive	Nieto-Ruiz, 2020

Country	Age	Ν	Intervention formula	Primary outcome	Results	Ref
China	0–12 mo	212	MFGM	Safety and tolerance	Safe	Jiang, 2022
Chile	4–12 mo	347	MFGM	Growth and safety	Safe	Jaramillo-Ospina, 2022
USA	0–12 mo	373	MFGM, low iron, low protein	Growth and tolerance	Safe	Hedrick, 2021
China	0–5 mo	386	MFGM	Infections	No effect	Li X, 2019
China	0–12 mo	212	MFGM	Neurodevelopment	Partly positive	Xia, 2021
China	0–12 mo	451	MFGM + lactoferrin	Neurodevelopment	Very positive	Li F, 2019
Spain	1–18 mo	170	MFGM, LCPUFAs, oligosaccharides, sialic acid, gangliosides, nucleotides and probiotics	Neurodevelopment	Partly positive	Nieto-Ruiz, 2020

Country	Age	Ν	Intervention formula	Primary outcome	Results	Ref
China	0–12 mo	212	MFGM	Safety and tolerance	Safe	Jiang, 2022
Chile	4–12 mo	347	MFGM	Growth and safety	Safe	Jaramillo-Ospina, 2022
USA	0–12 mo	373	MFGM, low iron, low protein	Growth and tolerance	Safe	Hedrick, 2021
China	0–5 mo	386	MFGM	Infections	No effect	Li X, 2019
China	0–12 mo	212	MFGM	Neurodevelopment	Partly positive	Xia, 2021
China	0–12 mo	451	MFGM + lactoferrin	Neurodevelopment	Very positive	Li F, 2019
Spain	1–18 mo	170	MFGM, LCPUFAs, oligosaccharides, sialic acid, gangliosides, nucleotides and probiotics	Neurodevelopment	Partly positive	Nieto-Ruiz, 2020

Country	Age	Ν	Intervention formula	Primary outcome	Results	Ref
China	0–12 mo	212	MFGM	Safety and tolerance	Safe	Jiang, 2022
Chile	4–12 mo	347	MFGM	Growth and safety	Safe	Jaramillo-Ospina, 2022
USA	0–12 mo	373	MFGM, low iron, low protein	Growth and tolerance	Safe	Hedrick, 2021
China	0–5 mo	386	MFGM	Infections	No effect	Li X, 2019
China	0–12 mo	212	MFGM	Neurodevelopment	Partly positive	Xia, 2021
China	0–12 mo	451	MFGM + lactoferrin	Neurodevelopment	Very positive	Li F, 2019
Spain	1–18 mo	170	MFGM, LCPUFAs, oligosaccharides, sialic acid, gangliosides, nucleotides and probiotics	Neurodevelopment	Partly positive	Nieto-Ruiz, 2020

MFGM as a Supplement to Infant Formula Is Still Very Promising


- Positive effect on neurodevelopment?
 - 4 of 4 RCTs have shown some effect
 - 1 of 3 showed remaining effect at 5–6 years

• Prevention of infections?

- 5 of 7 RCTs have shown some effect
- Different interventions and outcomes and time periods

• Remaining challenges:

- Different MFGM products with different lipids and protein composition
- More high-quality RCTs with well-defined MFGM fractions are needed

Future Perspectives: Ongoing Questions

Would some at-risk groups of breastfed infants benefit from additional MFGM? For example:

- Preterm infants? (increased risk of cognitive impairment and infections)
- Infants with immune deficiency?
- Infants with acquired brain lesions?

Conclusions for Clinical Practice

- Breastfeeding should be supported
 - Ensures MFGM intake and best health outcomes
- For those who cannot breastfeed, MFGMsupplemented infant formulas are available
 - Safe, possible health benefits, but more studies are needed to prove the clinical effects of this intervention

Key Takeaways

John Colombo, PhD Magnus Domellöf, MD, PhD

Key Takeaways: Nutrition and Neurodevelopment in Infants

The brain is the fastest-growing organ in infants and toddlers.

According to the AAP, optimizing nutrition requires an understanding of the "complex interplay" of the various nutrients that contribute to brain development.

Breastfeeding is the gold standard for infant nutrition and has been associated with improved neurodevelopment.

Key Takeaways: Bioactives and MFGM

 $\left| \begin{array}{c} \\ \\ \end{array} \right|$

The bioactive components of breast milk may improve immune function, promote neurodevelopment, and/or prevent morbidities.

MFGM is a 3-layer membrane of polar lipids, glycolipids, and proteins that surrounds triacylglycerol-rich milk fat globules in mammalian milk.

Compared with infant formula fat droplets, human milk fat droplets are larger (~5 vs 0.2 μm) and have higher sphingomyelin contents.

Key Takeaways: MFGM Supplementation in Infant Formula

In some randomized trials, MFGM supplementation in infant formula has been associated with improved cognitive outcomes.

MFGM supplementation may also reduce the risk of infection, help maintain intestinal barrier integrity, and modulate the gut microbiome.

For those who cannot breastfeed, MFGM-supplemented infant formulas are safe and may have health benefits—but more studies are needed on the clinical effects of MFGM supplementation.

