The Early Nutrition Journey and MFGM: Evidence for Improving Cognitive Outcomes

This activity is supported by an educational grant from Mead Johnson Nutrition.

Faculty Presenters

John Colombo, PhD

Professor of Psychology Director of the Schiefelbusch Institute for Life Span Studies University of Kansas Lawrence, Kansas

Sean Deoni, PhD

Associate Professor of Pediatrics and Radiology Director, Advanced Baby Imaging Lab Warren Alpert Medical School Brown University Pawtucket, Rhode Island

Rafeal Jimenez-Flores, PhD

Professor J.T. Parker Endowed Chair in Dairy Foods College of Food, Agricultural, and Environmental Sciences Department of Food Science and Technology The Ohio State University Columbus, Ohio

Faculty Disclosures

It is the policy of the Annenberg Center to ensure fair balance, independence, objectivity, and scientific rigor in all programming. All faculty participating in accredited programs are expected to identify and reference off-label product use and disclose any relationship with those supporting the activity or any others whose products or services are discussed.

John Colombo, PhD

Advisory Board	Ingenuity Foods, LLC and Nestle
Consultant	Reckitt Mead Johnson Nutrition
Research Support	Fonterra Bands, Inc.
Sean Deoni, PhD	
Speakers Bureau	Mead Johnson Nutrition, Nestle Nutrition, Wyeth Nutrition

Rafeal Jimenez-Flores, PhD

No relationships to disclose.

Faculty have documented that this presentation will involve discussion of unapproved or off-label, experimental, or investigational use. For complete disclosure information, please see our course syllabus.

Learning Objectives

By participating in this education, you will better:

Ide ne

Identify the clinical significance of MFGM in early life nutrition and its impact on neurodevelopment and brain structure and function

Dis cog

Discuss the longitudinal benefits of early life MFGM supplementation on cognitive outcomes, measures of intelligence, and executive functioning

The Early Nutrition Journey and MFGM: Evidence for Improving Cognitive Outcomes

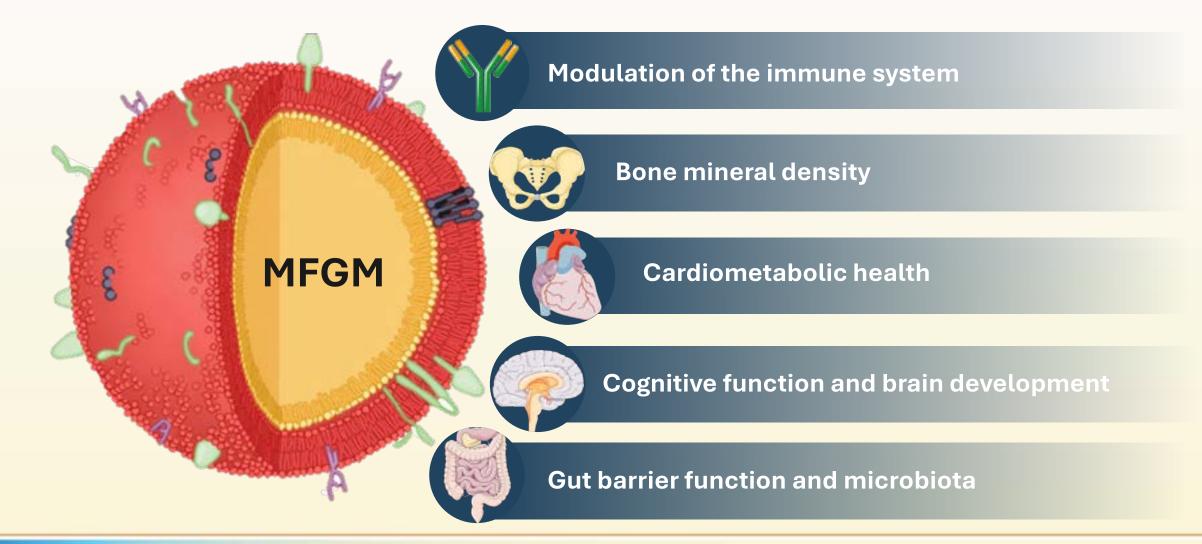
The Science and Structure of MFGM and Mechanisms of Action of MFGM on Health

2

3

MFGM and the Developing Brain

Supplemental MFGM and Neurodevelopmental Outcomes



The Science & Structure of MFGM

Rafael Jimenez-Flores, PhD

Link Between MFGM and Human Health

Anto L et al. Nutrients. 2020;12(4):1001.

MFGM Benefits: Results From Selected International Studies

Study (Year)	Country	Neurodevelopment	Immune System	Other
Zavaleta et al (2011)	Peru		Less bloody diarrhea at 12 months	
Gurnida et al (2012)	Indonesia	Better coordination and performance at 6 months		
Veereman-Wauters et al (2012)	Belgium, France, Netherlands	Better behavior in preschoolers	Fewer fever episodes at 6 weeks	
Tanaka et al (2013)	Japan	Better behavior and attention in premature infants at 18 months		
Timby et al (2014)	Sweden	Better cognitive development scores at 12 months		
Timby N et al (2015)	Sweden		Lower incidence of otitis media at 6 months	
Li et al (2019)	China	Better cognitive, language, and motor functions at 12 months	Less diarrhea and IVRA	
Jaramillo-Ospina et al (2022)	Chile			Growth and safety

MFGM & Cognitive Development: Short- & Long-Term Outcomes in the Lighthouse Clinical Trial

THE JOURNAL OF PEDIATRICS • www.jpeds.com	ORIGINAL	
Improved Neurodevelopmental Outcomes As Bovine Milk Fat Globule Membrane and Lactor Formula: A Randomized, Controlled Fei Li, MD, PhD ¹ , Steven S. Wu, MD ² , Carol Lynn Berseth, MD ^{2,3} , Cheryl L. Harris, M Jennifer L. Wampler, PhD ² , Weihong Zhuang, MS ² , Geoffrey Cleghorn, MD ^{2,6} , Co Bryan Liu, MD, PhD ^{2,8} , D. Jill Shaddy, MA ⁹ , and John Colomb	ferrin in Infant Trial IS ² , James D. Richards, PhD ^{4,5} , lin D. Rudolph, MD, PhD ^{2,7} ,	Accelerated neurodevelopmental profile at 1 year following MFGM/lactoferrin supplementation (Li F et al, <i>J Pediatr,</i> 2019)
THE JOURNAL OF PEDIATRICS • www.jpeds.com	ORIGINAL	

ARTICLES

Improved Neurodevelopmental Outcomes at 5.5 Years of Age in Children Who Received Bovine Milk Fat Globule Membrane and Lactoferrin in Infant Formula Through 12 Months: A Randomized Controlled Trial

John Colombo, PhD¹, Cheryl L. Harris, MS², Jennifer L. Wampler, PhD², Weihong Zhuang, MS², D. Jill Shaddy, MA³, Bryan Y. Liu, MD, PhD⁴, and Steven S. Wu, MD^{2,5} Improved cognitive outcomes in multiple domains at 5.5 years following MFGM/lactoferrin supplementation (Colombo J et al, *J Pediatr*, 2023)

The Science & Structure of MFGM

What Is MFGM?

MFGM Components

TG

Examples: Glycosphingolipids containing sialic acid Role: Involved in myelination and synaptic transmission

Sphingolipids^{1,4} Example: Sphingomyelin Role: Supports myelination of nerves

Proteins^{1,5,6} Examples: mucin-1 (MUC1), lactadherin Roles: Supports the immune system, antimicrobial effects

Phospholipids^{1,3} Example: Phosphatidylcholine Role: Important component of cell membranes

TG, triglycerides

© Copyright 2025. Annenberg Center for Health Sciences. Dewettinck K et al. Int Dairy J. 2008;18:436-457.
 McJarrow P et al. Nutr Rev. 2009;67:451-463.
 Wurtman RJ. Metabolism. 2008;57(suppl 2):S6-10.
 Quarles RH et al. In: Siegel GJ, ed. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects; 2006:51-71.
 Sheng YH et al. Mucosal Immunol. 2013;6:557-568.
 Hettinga K et al. PLoS One. 2011;6:e19433.

Nutrients Needed for Brain Development

© Copyright 2025. Annenberg Center for Health Sciences.

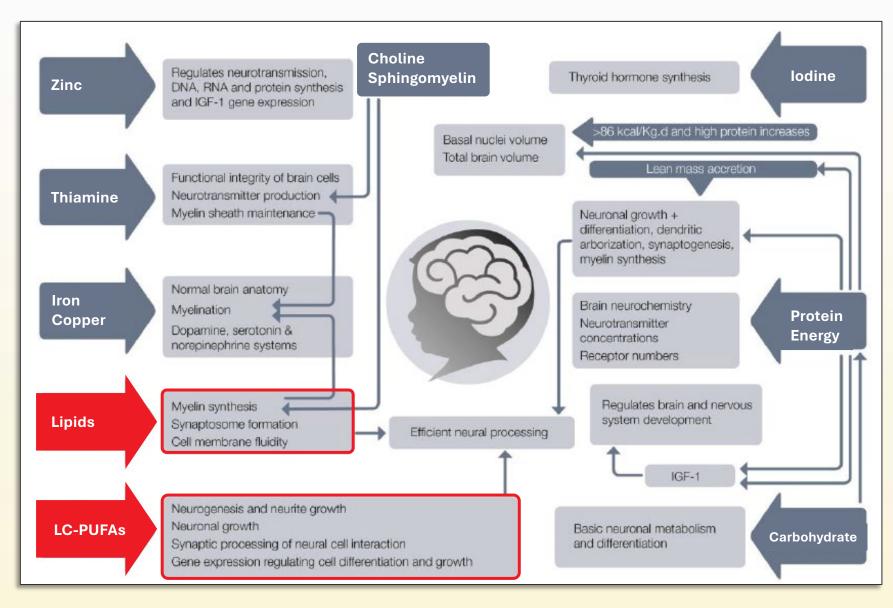
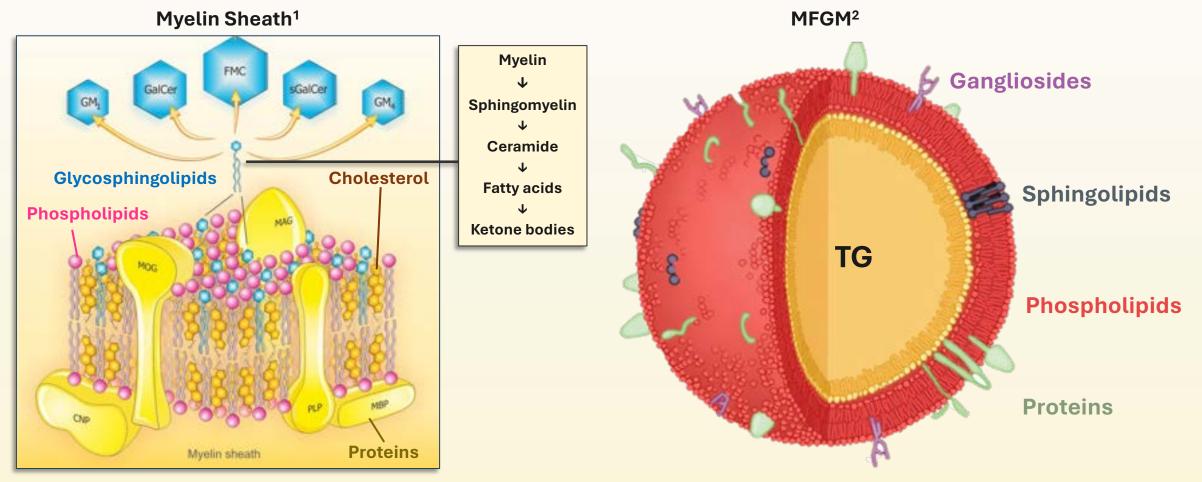



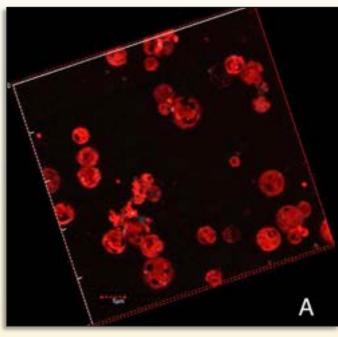
Image used under a Creative Commons license (<u>CC BY</u>). © Cormack BE et al. Nutrients. 2019;11(9):2019.

Cormack BE et al. Nutrients. 2019;11(9):2019.

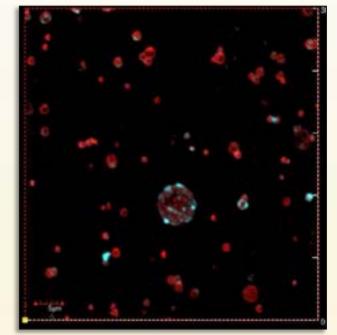
MFGM as a Source of Nutrients for Neurodevelopment

Left image used under a Creative Commons license (<u>CC BY</u>). ©Podbielska M et al. Brain Sci. 2013;3(3):1282-1324.

© Copyright 2025. Annenberg Center for Health Sciences. 1. Podbielska M et al. Brain Sci. 2013;3(3):1282-1324. 2. Dewettinck K et al. Int Dairy J. 2008;18:436-457.


The Science & Structure of MFGM

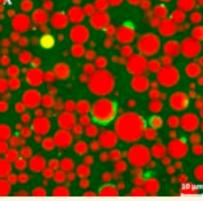
MFGM Production & Manufacturing



Effects of Processing on MFGM

MFGM From Raw Cream

MFGM From Pasteurized Cream


With homogenization and pasteurization, fewer large fat globules, higher amounts of proteins (blue)

Differences Between Lipids in Human Milk and Standard Infant Formula

Confocal Microscopy Images of Fat Droplets Showing Lipids (Red) and Proteins (Green)¹

Characteristics of Human Milk Fat Droplets²

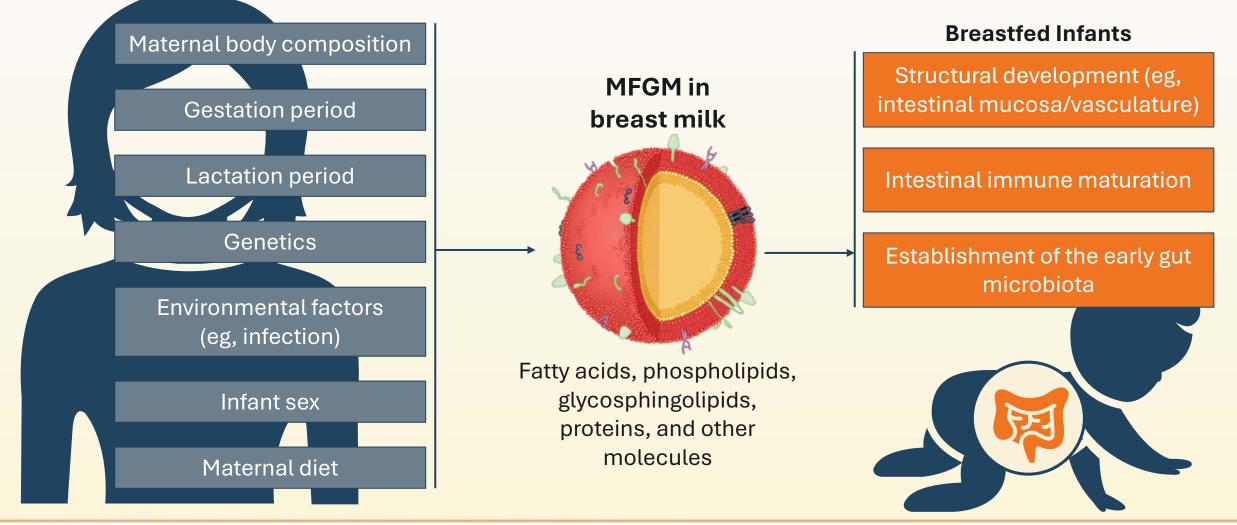
- High sphingomyelin content
- Dynamic across lactation stages
- Large fat globules (~5 µm)
- Phospholipid bilayer membrane

Standard infant formula

Characteristics of Standard Infant Formula Fat Droplets²

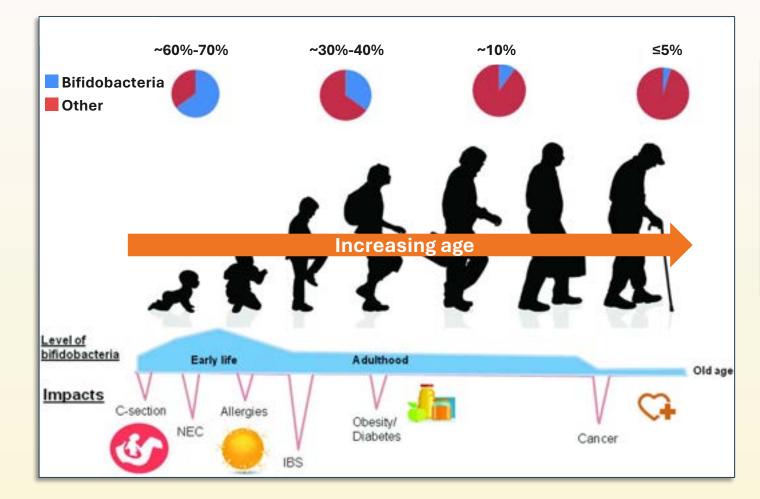
- High phospholipid content
- High phosphatidylcholine content
- Small fat globules (~0.2 µm)
- No phospholipid bilayer membrane

© Copyright 2025. Annenberg Center for Health Sciences.


Gallier S et al. Colloids Surf B Biointerfaces. 2015;136:329-339. Images used under a Creative Commons license (<u>CC BY</u>). © 2015, the Authors.
 Wei W et al. J Agric Food Chem. 2019;67(50):13922-13928.

Mechanisms of Action of MFGM on Health

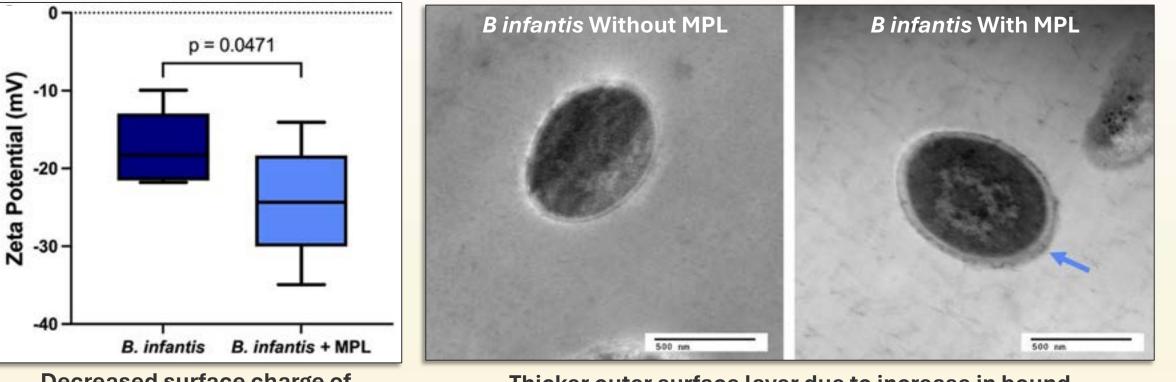
The Gut Microbiome



Maternal & Environmental Factors, MFGM Composition, & Effects on the Infant Gut

© Copyright 2025. Annenberg Center for Health Sciences. Lee H et al. Front Pediatr. 2018;6:313.

Bifidobacteria Populations Decline With Age


- Predominant genus in the gut microbiome of healthy breastfed infants
- May be beneficial for health across age ranges

How can we promote Bifidobacteria persistence?

Image used under a Creative Commons license (<u>CC BY</u>). ©Arboleya S et al. Front Microbiol. 2016;7:1204.

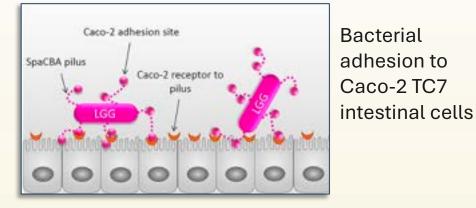
© Copyright 2025. Annenberg Center for Health Sciences. Arboleya S et al. Front Microbiol. 2016;7:1204.

Milk Phospholipid Protection of *Bifidobacterium longum* ssp *infantis* During In Vitro Digestion

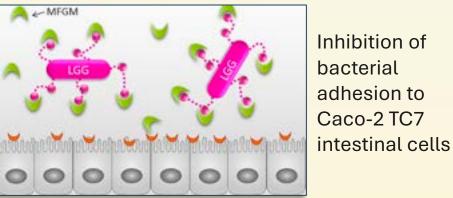
Decreased surface charge of *B infantis* with milk phospholipids

Thicker outer surface layer due to increase in bound polysaccharides in the presence of milk phospholipids

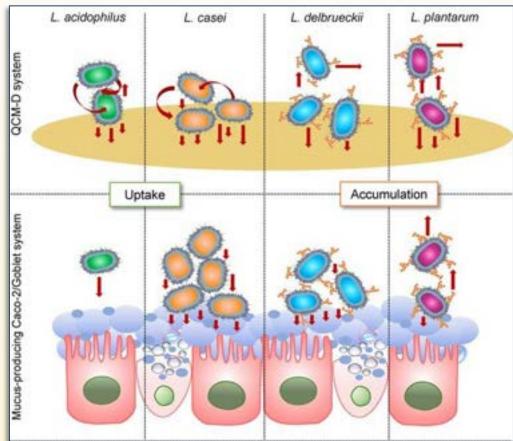
MPL, milk phospholipid


Images used under a Creative Commons license (CC BY). ©Kosmerl E et al. Front Nutr. 2023;10:1194945.

© Copyright 2025. Annenberg Center for Health Sciences.


Kosmerl E et al. Front Nutr. 2023;10:1194945.

MFGM Modifies LAB Surface and Adhesive Properties


LGG in the GI Tract Without MFGM¹

LGG in the GI Tract With MFGM¹

Differential Adhesion Behavior After Treatment With MFGM²

Strain-dependent effects of milk phospholipids on bacterial surface properties and subsequent adhesion

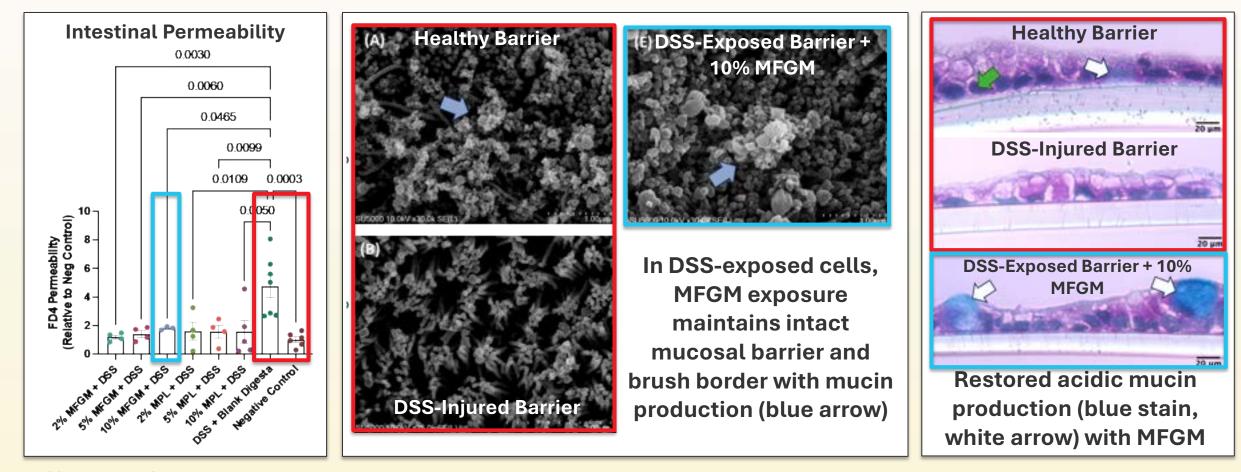
LAB, lactic acid-producing bacteria; LGG, Lactobacillus rhamnosus GG; QCM-D, quartz crystal microbalance with dissipation monitoring.

© Copyright 2025. Annenberg Center for Health Sciences. **1.** Guerin J et al. Colloids Surf B Biointerfaces. 2018;167:44-53. **2.** Ortega-Anaya J et al. Food Res Int. 2021;146:110471.

MFGM Phospholipids and the Intestinal Epithelial Barrier

<complex-block>

Evidence of fusion between the intestinal cell plasma membrane and the phospholipids in MFGM


After incubation with MFGM, Caco-2 cells had significant changes in lipid composition:

- Cholesterol esters

Images used under a Creative Commons license (CC BY). ©Martínez-Sánchez V et al. Food Res Int. 2023;173(Pt 1):113330.

© Copyright 2025. Annenberg Center for Health Sciences. Martínez-Sánchez V et al. Food Res Int. 2023;173(Pt 1):113330.

MFGM Facilitates Maintenance of the Intestinal Barrier Integrity

DSS, dextran sodium sulfate Images used under a Creative Commons license (<u>CC BY</u>). © Kosmerl E et al. *Nutrients*. 2024;16(7):954.

© Copyright 2025. Annenberg Center for Health Sciences. Kosmerl E et al. Nutrients. 2024;16(7):954.

Mechanisms of Action of MFGM on Health

The Gut-Brain Axis

The Gut-Brain Axis: Mediating the Effects of MFGM

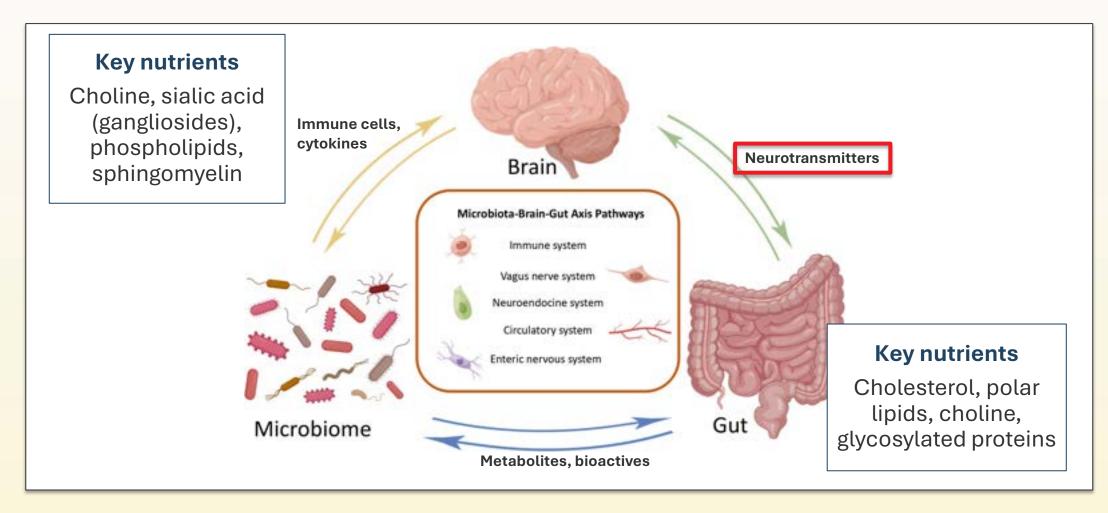
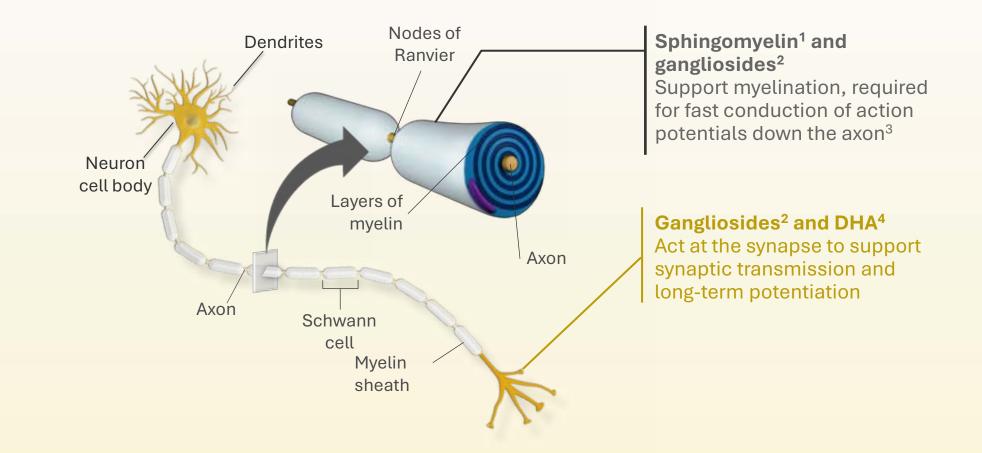
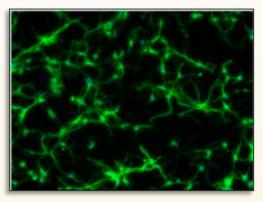
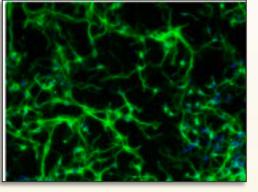



Image used under a Creative Commons license (<u>CC BY</u>). ©Yuan C et al. *Front Cell Infect Microbiol*. 2023;13:1282431.

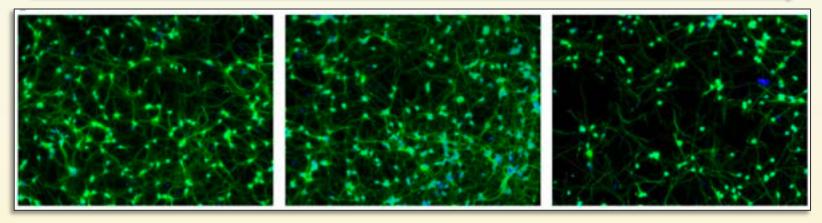
© Copyright 2025. Annenberg Center for Health Sciences. 1. Brink LR, Lönnerdal B. J Nutr Biochem. 2020;85:108465. 2. Yuan C et al. Front Cell Infect Microbiol. 2023;13:1282431.


MFGM Components Support Nerve Myelination and Synaptic Transmission



1. Quarles RH et al. In: Siegal GJ, ed. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects; 2006:51-71. 2. Palmano K et al. Nutrients. 2015;7:3891-3913. 3. Squire LR et al, eds. Fundamental Neuroscience. 2nd ed; 2003. 4. Wurtman RJ. Metabolism. 2008;57(suppl 2):S6-S10.

Dairy Phospholipids Support Cortical Neuron Growth & Stimulation



Untreated neurons Negative control

FCS-treated neurons Positive control

Increasing phospholid extract concentration

Cortical neuron outgrowth increases after incubation with phospholipid extract

FCS, fetal calf serum

© Copyright 2025. Annenberg Center for Health Sciences. Barry KM et al. J Functional Foods. 2018;40:60-67.

Key Takeaways

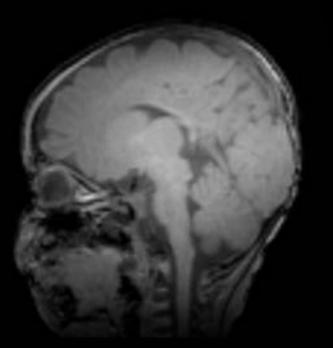
- MFGM is a complex structure enveloped by a lipid trilayer containing bioactive lipids, proteins, and carbohydrates
- MFGM has an important role in the health outcomes of the developing infant
- MFGM and its lipid constituents:
 - Fortify the mucosal barrier to protect against intestinal barrier disruption through mucin regulation
 - Facilitate healthy gut microbiota
 - Play a role in the gut-brain axis, likely via the intestinal neuronal system

Gracias!

MFGM & the Developing Brain

Early Brain Development

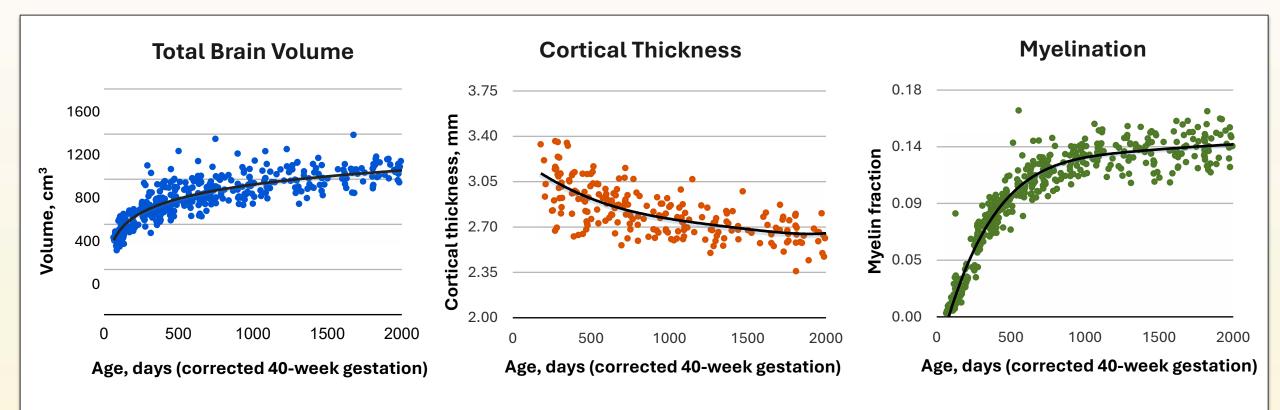
Sean Deoni, PhD


Early Cognitive and Behavioral Development

Age (Years)

	0	1	2	3	4	5	6	7
Vision Development								
Speech Development								
Emotional Development								
Math / Logic								
Social Attachment and Skills								
Motor Development								
Peer Social Skills								
Language								

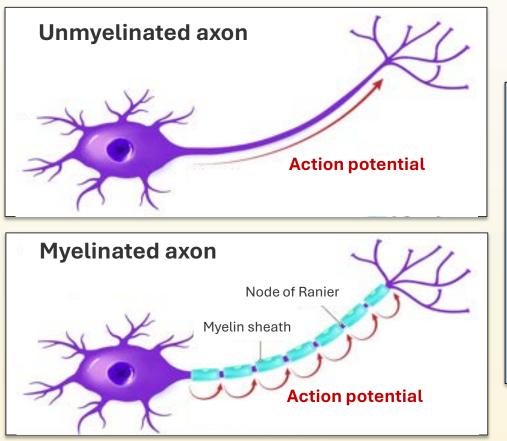
Early Brain Development



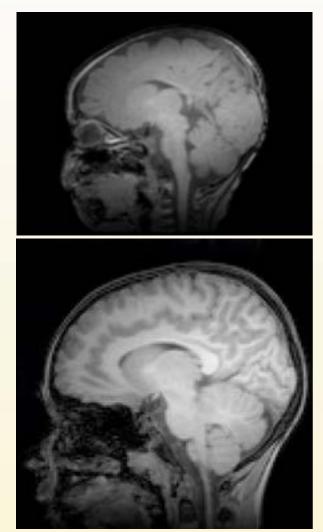
3 months

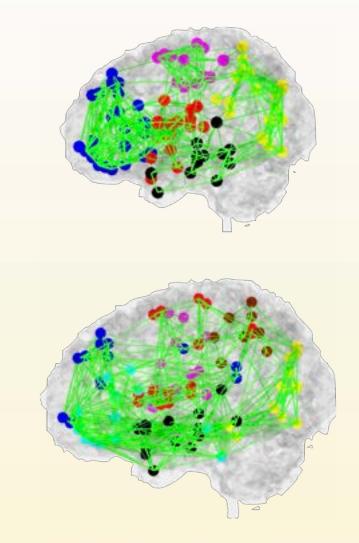
12 months

24 months

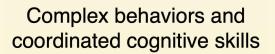

Measures of Neurodevelopment With Age

Myelination in the Developing Brain





Myelin protects the axon, speeds information transfer, and facilitates brain connectivity & function



Myelination in the Developing Brain

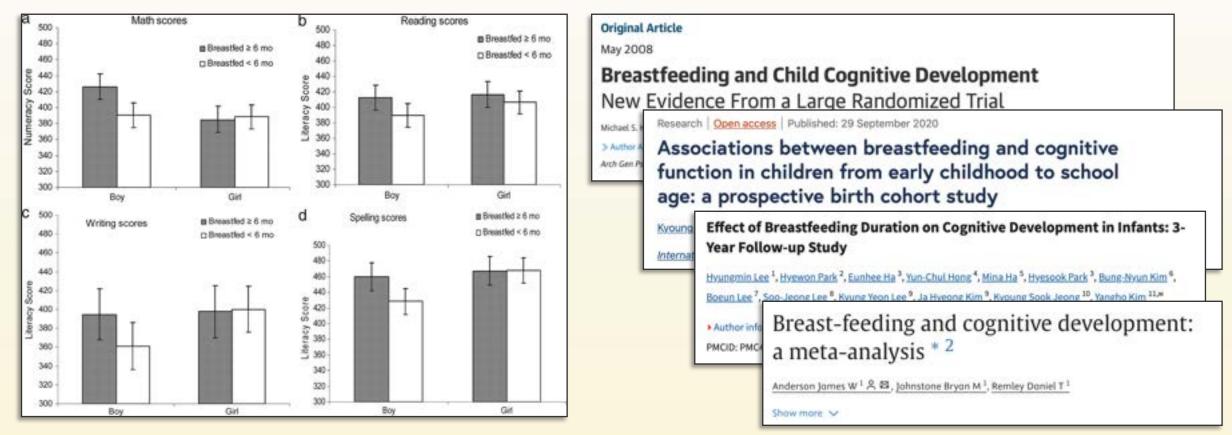
Simplistic behaviors and primary cognitive abilities

© Copyright 2025. Annenberg Center for Health Sciences. Stadelmann C et al. *Physiol Rev.* 2019;99(3):1381-1431.

MFGM & the Developing Brain

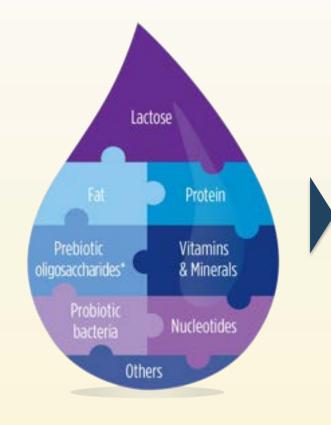
Nutrition, Human Milk, & Neurodevelopment

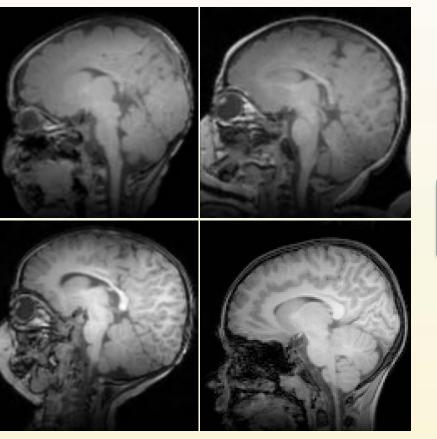
Nutritional Needs for the Developing Brain


Lipids & Fatty Acids	Minerals	Vitamins	Micronutrients
 LC-PUFAs (eg, DHA, ARA) Promote healthy neural growth and development Regulate membrane function Involved in lipid biosynthesis and myelination ~20% of the fatty acid content of the brain Phospholipids (eg, phosphatidylcholine) ~10% of the lipid weight of myelin Sphingolipids (eg, sphingomyelin) Critical components of the myelin sheath Cholesterol Essential constituent of myelin Necessary for myelin membrane synthesis 	 Iron Utilized by oligodendrocytes (myelin-producing cells) Zinc Helps bind myelin basic proteins to the myelin membrane 	 B12 Helps convert L- methylmalonyl coenzyme A into succinylcholine coenzyme A Required for synthesis of myelin phospholipids Vitamin K Can increase sulfatides, which are incorporated into the myelin sheath to maintain structure and function 	 Promotes Promotes oligodendrocyte s and their precursors, influencing myelination and remyelination

Breastmilk provides all of these nutrients – with the exception of iron – at the right time and in the ideal amount.

Breastfeeding & Child Neurodevelopment

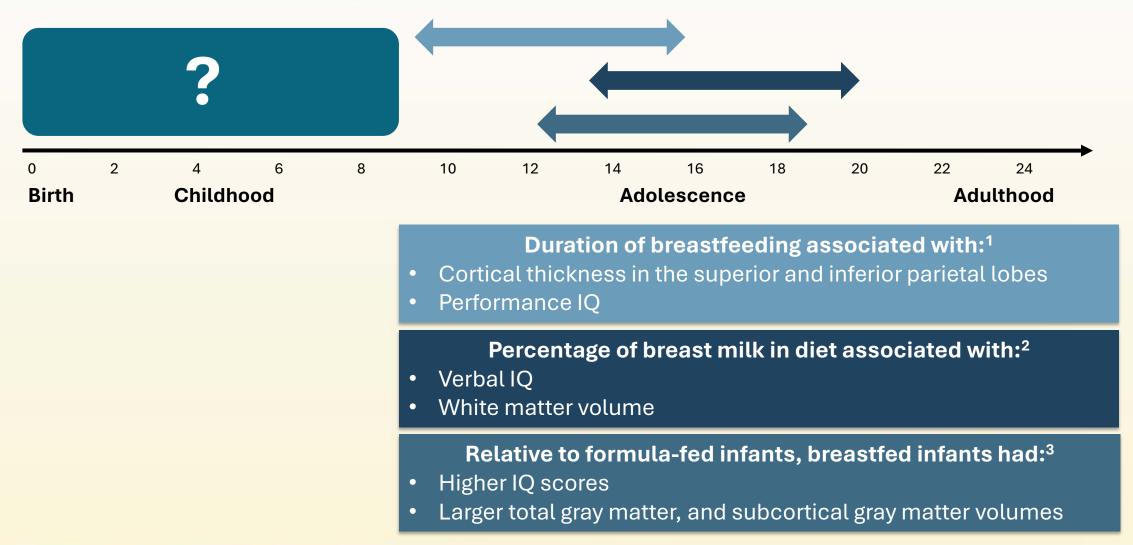

Studies consistently show improved cognitive development and academic outcomes in individuals who were breastfed as infants; enhanced as a function of breastfeeding duration.



Potential Underlying Biological Mechanism

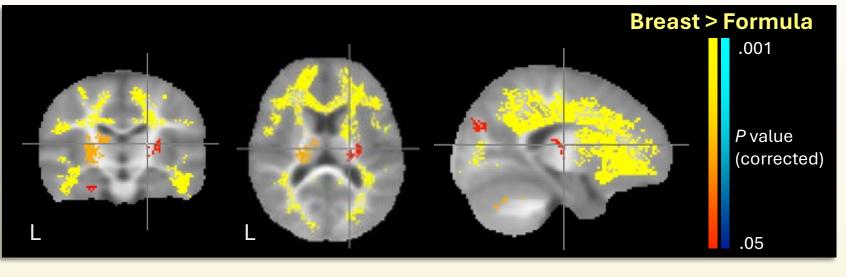
Human Milk Nutrients

Brain Development


Cognitive Development

© Copyright 2025. Annenberg Center for Health Sciences.

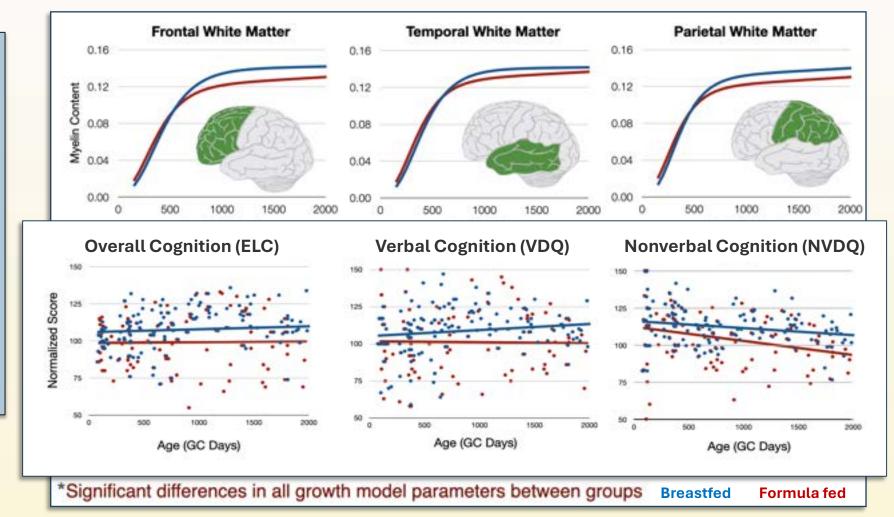
Nutrition & Early Neurodevelopment


1. Kafouri S et al. Int J Epidemiol. 2013;42(1):150-159. **2.** Isaacs EB et al. Pediatr Res. 2010;67(4):357-362. **3.** Luby JL et al. J Am Acad Child Adolesc Psychiatry. 2016;55(5):367-375.

The Challenges of Pediatric MRI

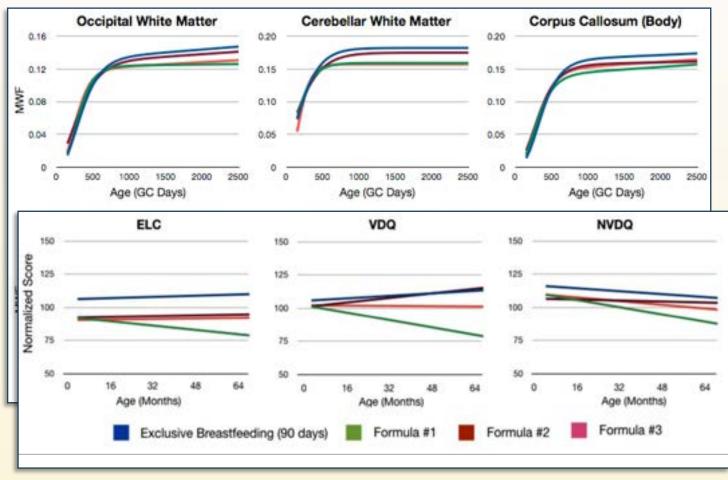
Breastfeeding & Neurodevelopment (Cross-Sectional Study)

Matched cohort study of toddlers (6-60 months of age) who were exclusively breastfed (n = 62) or formula fed (n = 38) for at least 3 months.



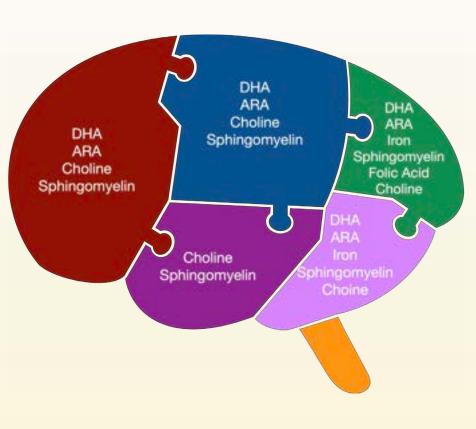
	Exclusively breastfed	Exclusively formula fed	P value
Fine motor	64.8 ± 10.9	56 ± 7.7	<.0001
Visual reception	56.2 ± 8.7	51.3 ± 10.8	.0085
Receptive language	61.9 ± 7.7	49.3 ± 12.5	<.0001
Expressive language	50.5 ± 13	43.3 ± 13.3	.0063

Breastfeeding & Neurodevelopment (Longitudinal Study)

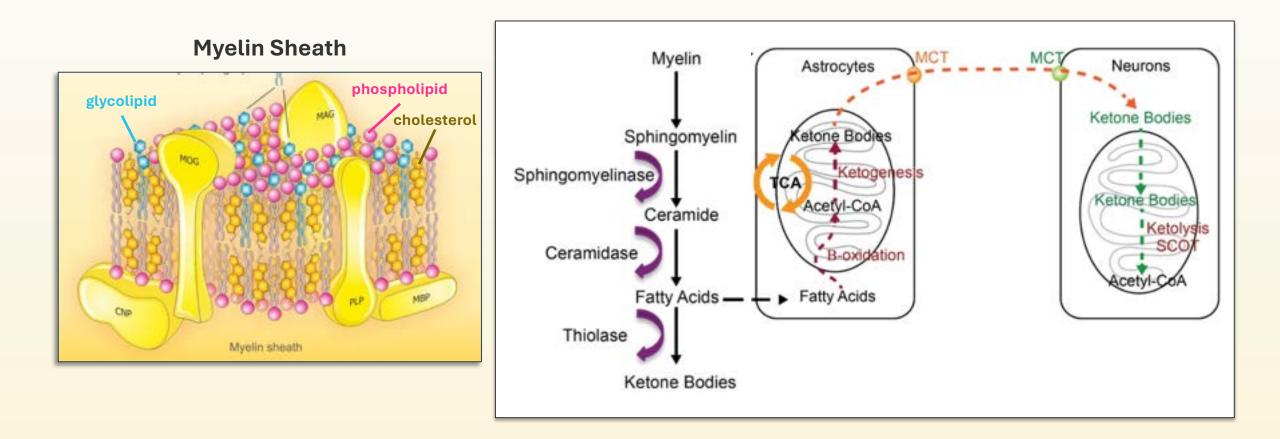

Matched cohort study of toddlers (2-76 months of age) who were exclusively breastfed (n = 62) or formula fed (n = 88) for at least 3 months.

Influence of Nutrition Intake

Nutrient	Formula 1	Formula 2	Formula 3	% Difference (Min-Max)
ARA (mg/L)	173	238	255	32
DHA (mg/L)	62.2	117	120.6	48
Folic Acid (µg/L)	304	232	146.2	52
Phosphatidylcholine (mg/L)	85	58	60	29
Sphingomyelin (mg/L)	28.1	62	28.1	55
Iron (mg/100g)	10.6	8.42	11.65	28
Choline (mg/100)	170	92.5	144	46


*Significant differences in intercept and slope between **formula #1** and **breastfeeding** and other formulas; *General difference in intercept of each formula and **breastfeeding** in ELC scores

Deoni S et al. Neuroimage. 2018;178:649-659.


Nutrition Differentially Impacts Regional Growth

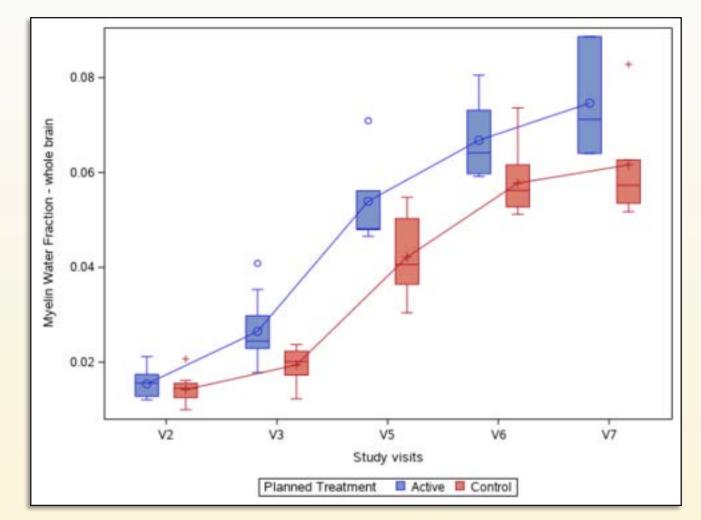

Region	ARA	DHA	Folic acid	Phosphatidyl- choline	Sphingo- myelin	Iron	Choline
Frontal WM	.002	.002	.030	<.0001	<.0001	.150	.004
Temporal WM	.040	.030	.170	.004	.002	.340	.260
Parietal WM	<.0001	<.0001	.005	<.0001	<.0001	.080	.080
Occipital WM	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	.006
Cerebellar WM	<.0001	<.0001	.013	<.0001	<.0001	<.0001	.020
Corpus callosum (body)	.003	.020	.450	<.0001	<.0001	.280	.076
Corpus callosum (genu)	.090	.150	.630	<.0001	<.0001	.270	.430
Corpus callosum (splenium)	.050	.020	.760	<.0001	<.0001	.560	.860

Nutrition Differentially Impacts Regional Growth

Left image used under a Creative Commons license (<u>CC BY</u>). ©Podbielska M et al. Brain Sci. 2013;3(3):1282-1324. Right images used under a Creative Commons license (<u>CC BY-NC-ND</u>). © Klosinski LP et al. *EBioMedicine*. 2015;2(12):1888-1904.

Testing the Role of Sphingomyelin and Other Nutrients in Neurodevelopment

Design of a Nutritional RCT Investigating Sphingomyelin Intake and Myelination


6 weeks	12 weeks	6 months	12 months	18 months	24 months	Nutrients	Investigational Formula	Control Formula	Human Milk Reference ^a			
Interver	ntion Perio	od				Energy, kcal/200 mL	132	132				
Investig	ational fori	mula (n = 3	9)			Myelin blend						
Control	formula (n	•				Sphingomyelin (mg/L)	105	22	86.7			
Human	milk refere	nce (n = 10)8)			DHA (mg/L)	132	71	89.8			
	Neuroim	aging				ARA (mg/L)	132	71	172.0			
		00110		1		Iron (mg/L)	8.6	4.0	0.3			
						Folate (µg/L)	219	85	24.5			

a. 3- and 6-month average

Schneider N et al. Nutrients. 2023;15(20):4439.

Longitudinal Patterns of Myelination

Compared with infants fed the control formula, those fed the interventional formula had:

- Significantly increased brain myelin content at 3, 6, 12, and 24 months of age
- Significantly increased rate of myelination throughout the first year of life

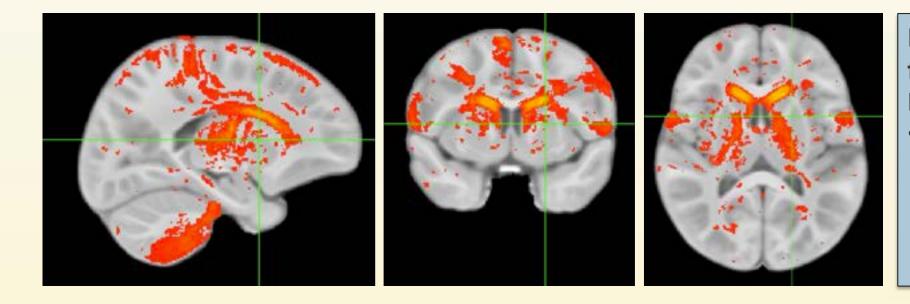
© Copyright 2025. Annenberg Center for Health Sciences. Schneider N et al. Nutrients. 2023;15(20):4439.

MFGM As a Source of Myelin Nutrients

Milk Fat Globule phospholipid Membrane (MFGM) glycolipid cholesterol O-linked glycan N-linked glycan Sphingomyelin Cholesterol MUC15 100 MUC1 BTN Liquid-ordered domain CNP 14 1 3 1 4 16 (3 11 3 16 (3 11 5 1 Lipid core Myelin sheath

Myelin Sheath

MFGM

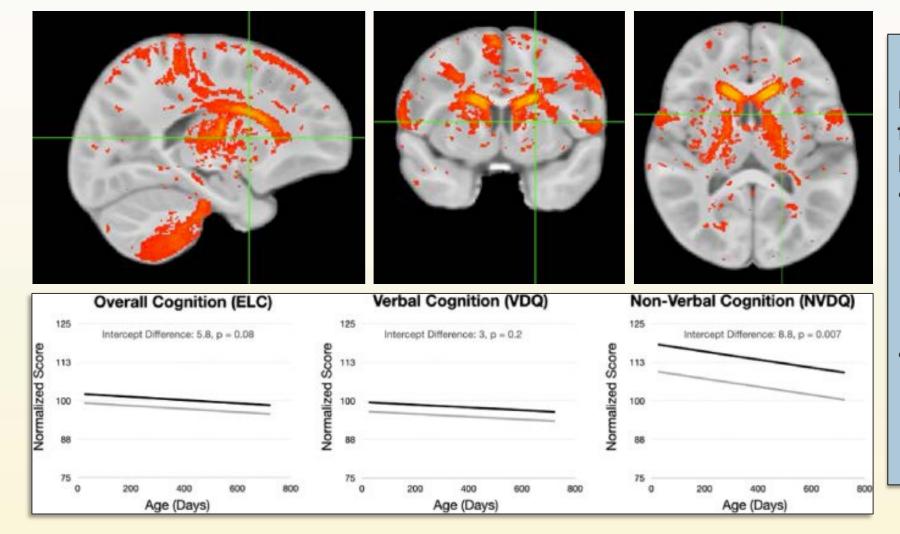

Left image used under a Creative Commons license (<u>CC BY</u>). ©Podbielska M et al. Brain Sci. 2013;3(3):1282-1324. Right images used under a Creative Commons license (<u>CC BY</u>). ©Kosmerl E et al. *Microorganisms*. 2021;9(2):341.

MFGM As a Source of Myelin Nutrients

BAMBAM Study of Health Neurodevelopment

2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
	nfants who	o received		without 28)	added bo	ovine MFC	M		form	ts who re nula with ne MFGM	added			

Healthy term infants who received ≥90% formula for the first 3 months of life without a family history of learning or psychiatric disorders (excluding maternal MDD during pregnancy)



Infants who received the formula with added MFGM had:

 Significantly increased brain myelin content over the first 2 years of life throughout motor related regions.

MFGM As a Source of Myelin Nutrients

Infants who received the formula with added MFGM had:

- Significantly increased
 brain myelin content
 over the first 2 years of
 life throughout motor
 related regions.
- Significantly increased motor skill development.

© Copyright 2025. Annenberg Center for Health Sciences.

Key Takeaways

- Nutrients, including folic acid, iron, cholesterol, LC-PUFAs, and sphingomyelin are important for white matter development and brain connectivity
- These nutrients are amply provided in human milk and partially explain observed cognitive differences between breastfed and formula-fed infants
- Formulas with supplemental DHA and sphingomyelin appear to promote improved myelination and brain maturation
- Observational and RCT findings suggest we can improve infant neurodevelopment through improved nutrition, even in a generally healthy child population
- Nutrition is only one of many factors that influence a child's development: love, read, and play with your child!

ECHO Environmental influences on Child Health Outcomes A program supported by the NIH

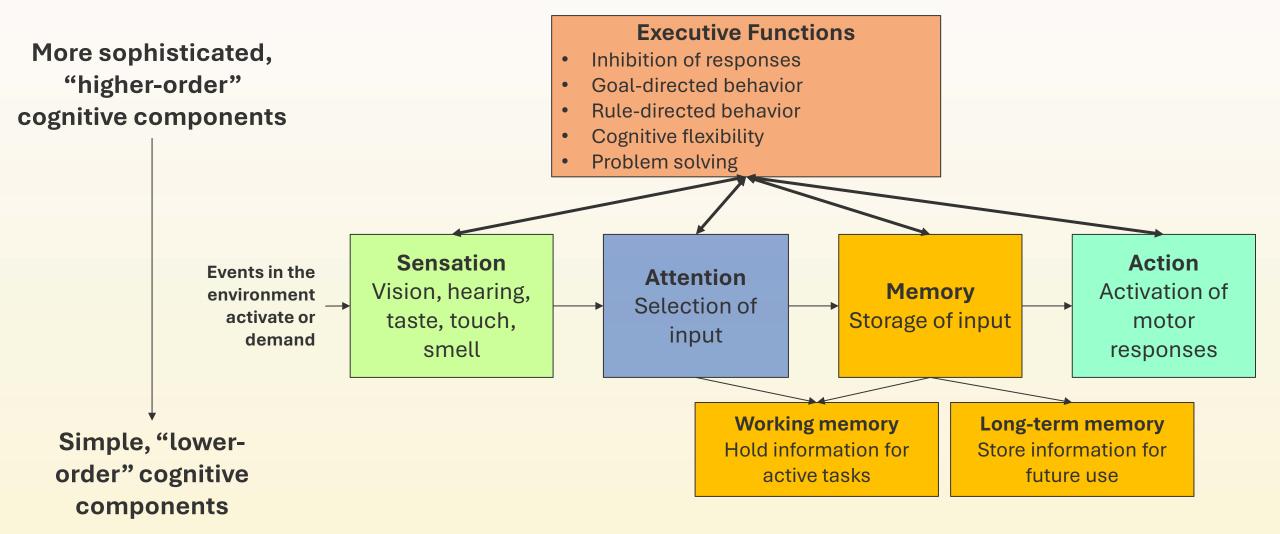
BILL& MELINDA GATES foundation

Nestle Research

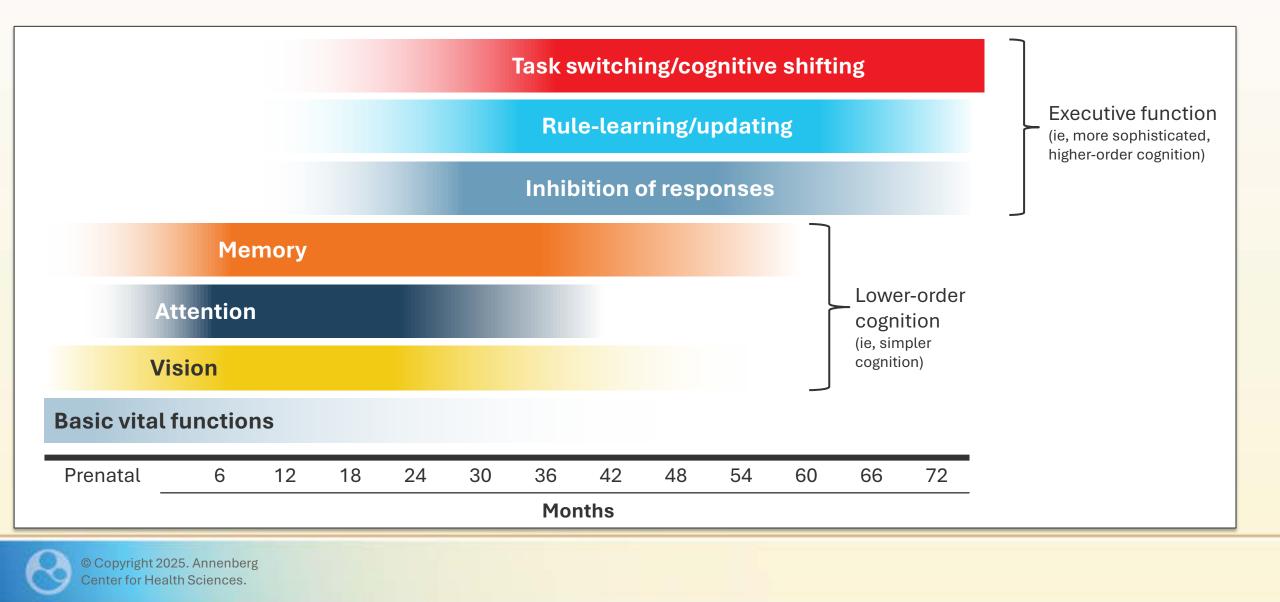
Helping Little Brains Do Big Things

www.babyimaginglab.com sdeoni@mac.com

Supplemental MFGM & Neurodevelopmental Outcomes


Assessing Cognitive Outcomes

John Colombo, PhD

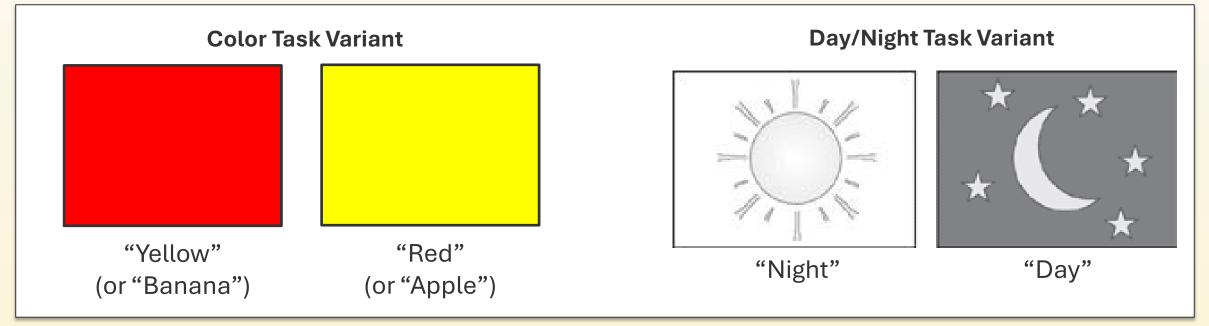

© Copyright 2025. Annenberg Center for Health Sciences.

Specific Cognitive Functions

Developmental Course of Cognitive Functions

Clinical Trial Outcomes to Measure Brain Development

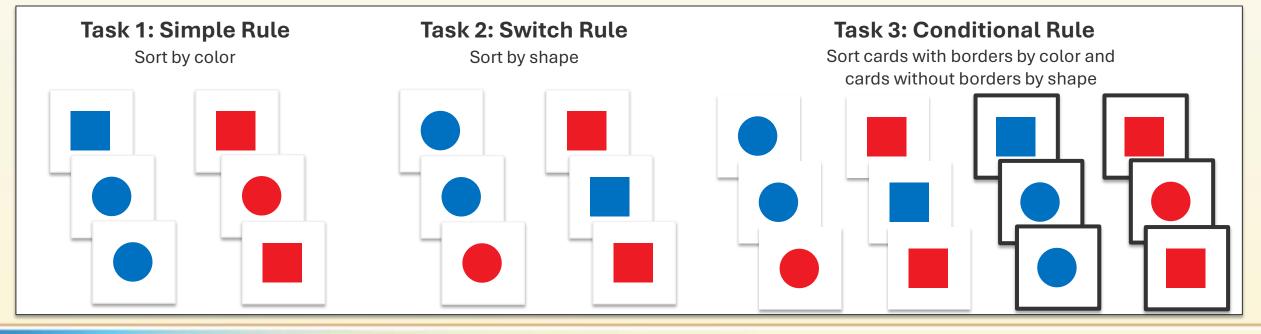
When designing a clinical trial, identifying outcomes to effectively evaluate the treatment is critical.


Options for measuring neurodevelopment include:

- Screening assessments
- Parent report measures (questionnaires)
- Standardized global developmental measures
- Tests of specific cognitive skills

Measuring Executive Function: Modified Stroop Task^{1,2}

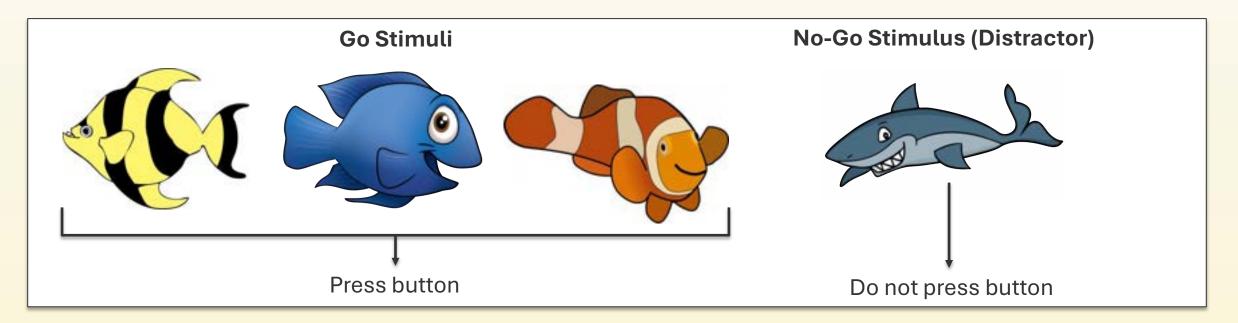
- Test: asks children to respond to a stimulus based on a nonintuitive rule
- Cognitive process measured: inhibitory control, rule-learning and strategy, and working memory
- Age group: ≥30 months



1. Colombo J et al. Am J Clin Nutr. 2019;109(5):1380-1392. 2. Colombo J et al. J Pediatr. 2023;261:113483.

Measuring Executive Function: Dimensional Change Card Sort (DCCS) Task¹⁻³

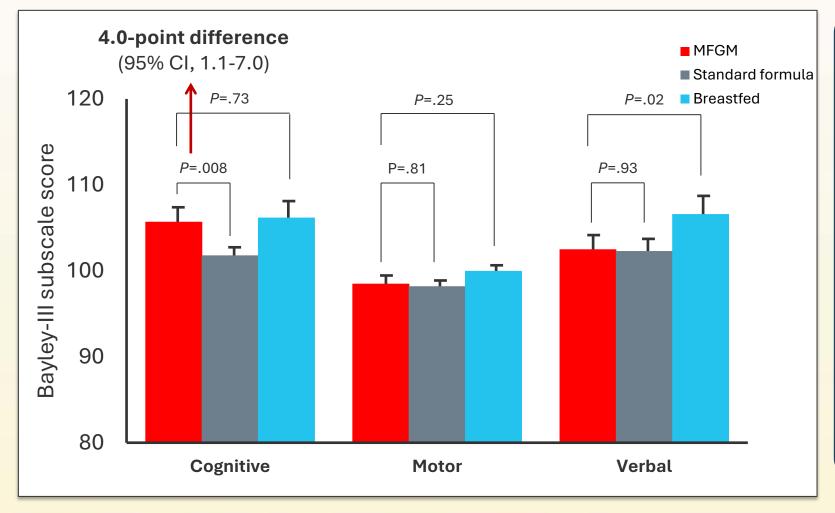
- **Test:** asks children to sort cards into boxes based on a specific characteristic (eg, color) and then asks them to *switch* and sort cards based on a different characteristic (eg, shape) and then again based on a conditional rule
- Cognitive process measured: rule-learning and cognitive flexibility
- Age group: ≥30 months



1. Colombo J et al. Am J Clin Nutr. 2019;109(5):1380-1392. **2.** Colombo J et al. J Pediatr. 2023;261:113483. **3.** Zelazo PD. Nat Protoc. 2006;1(1):297-301.

Measuring Executive Function: Go/No-Go Task

- Test: asks children to perform a quick motor response when specific stimuli are displayed (ie, "go" stimuli) and withhold this response for other stimuli (ie, "no-go" stimuli or distractors); often used in conjunction with event-related brain potential (ERP) recording¹
- Measures: inhibitory control¹
- Age group: usually ≥60 months, but has been used in younger children with some success²


1. Meule A. Front Psychol. 2017;8:701. 2. Holmboe K et al. PLoS One. 2021;16(12):e0260695.

Supplemental MFGM & Neurodevelopmental Outcomes

Effects of MFGM Supplementation

Swedish MFGM Study: Neurodevelopment at 12 Months

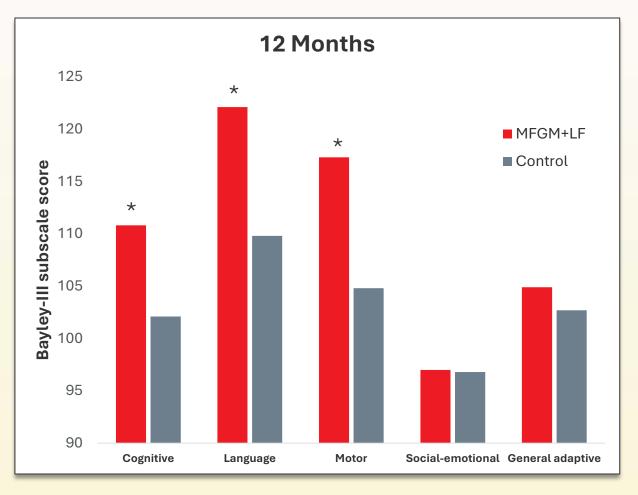
- Randomized, controlled study
- 160 healthy formula-fed infants were randomized to receive:
 - Standard formula until 6 months of age (n = 68)
 - Standard formula supplemented with MFGM (4% wt:wt) until 6 months of age (n = 73)
- A breastfed reference group was also recruited from the same hospital (n = 72)

Timby N et al. Am J Clin Nutr. 2014;99:860-868.

Studying the Benefits of MFGM Supplementation in Infant Formula: the Lighthouse MFGM Clinical Trial

- Study design
 - Prospective double-blind randomized controlled trial (RCT)
 - Enrolled 451 infants who were randomized to 12 months of feeding with:
 - » Standard cow's milk-based formula (control)
 - » Standard cow's milk-based formula with added bovine MFGM (5 g/L) and lactoferrin (0.6 g/L) (MFGM+LF) (intervention)
- **Primary outcome:** difference in Bayley Scales of Infant Development, 3rd edition (Bayley-III) cognitive composite scores at 12 months
- Secondary outcomes: tolerability/safety, growth/anthropometrics, and other measures of development

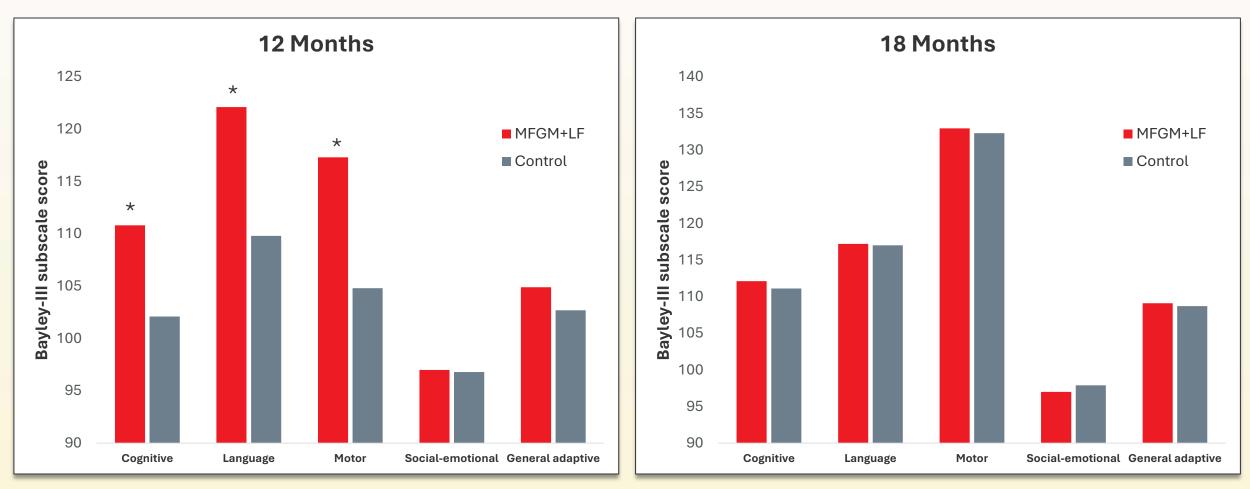
The Lighthouse MFGM Clinical Trial: Ages and Stages Questionnaire Outcomes


ASQ Domain Scores (Repeated Measures Analysis), Mean \pm SE

Domains	Day	120	Day	Day 180 Day 275			
	Control (n = 187)	MFGM + LF (n = 187)	Control (n = 185)	MFGM + LF (n = 183)	Control (n = 167)	MFGM + LF (n = 166)	for study group
Communication	49.1 ± 0.5	51.4 ± 0.5	50.8 ± 0.5	51.5±0.5	51.5 ± 0.6	52.5 ± 0.6	.010
Gross motor	49.7 ± 0.6	52.3±0.6	48.6±0.6	49.5±0.6	46.2±0.7	47.1±0.7	.010
Fine motor	46.6±0.6	49.5±0.6	52.0±0.6	52.9±0.6	53.4 ± 0.6	54.6 ± 0.6	.002
Problem solving	49.7 ± 0.6	52.1 ± 0.6	49.5±0.6	51.1±0.6	51.9±0.6	52.7±0.6	.003
Personal/social	46.5 ± 0.6	50.2 ± 0.6	47.1±0.6	48.4 ± 0.6	50.0 ± 0.6	51.0 ± 0.6	<.001

© Copyright 2025. Annenberg Center for Health Sciences. Li F et al. J Pediatr. 2019;215:24-31.e8.

The Lighthouse MFGM Clinical Trial: Bayley-III Outcomes at 12 Months


*P <.001

© Copyright 2025. Annenberg Center for Health Sciences.

Li F et al. J Pediatr. 2019;215:24-31.e8.

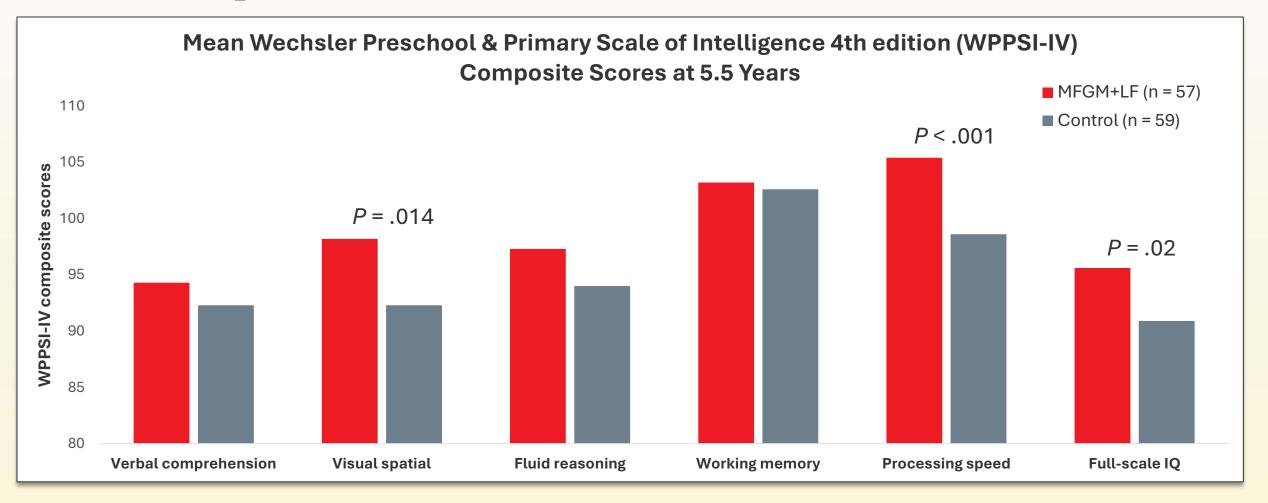
The Lighthouse MFGM Clinical Trial: Bayley-III Outcomes at 18 Months

*P <.001

Li F et al. J Pediatr. 2019;215:24-31.e8.

The Lighthouse MFGM Clinical Trial: Long-Term Follow-Up

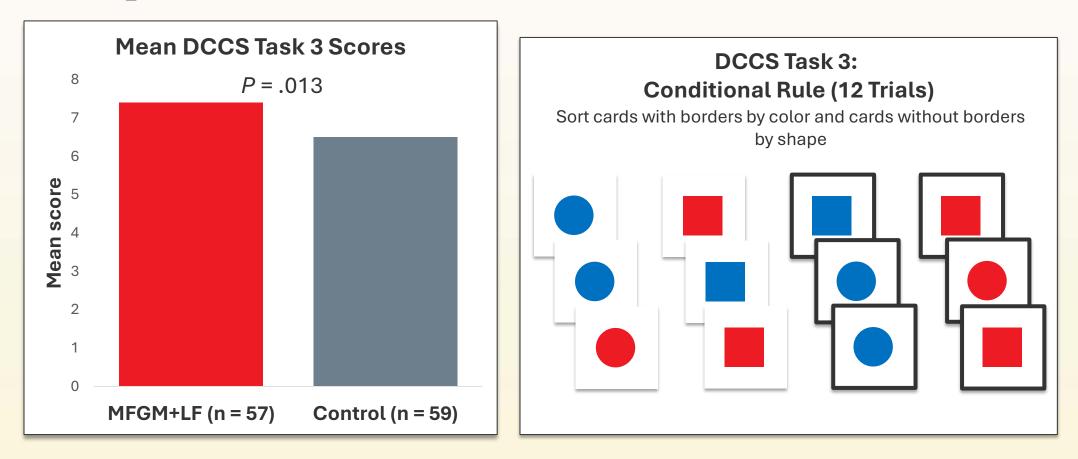
Follow-up study design


- Enrolled trial participants who completed 12 months of the assigned study feeding who were 5.5 years (±2 months) at the time of follow-up testing
- 116 of 292 participants meeting eligibility criteria were enrolled
 - » No differences in demographic characteristics between those who did or did not participate in the follow-up study

Primary outcome measures

- WPPSI-IV Full-Scale IQ (a measure of overall intellectual ability)
- 5 primary WPPSI-IV indices (measures of the domain-specific abilities of verbal comprehension, visual spatial, fluid reasoning, working memory, and processing speed)


The Lighthouse MFGM Clinical Trial Long-Term Follow-Up: Outcomes at 5.5 Years


Colombo J et al. J Pediatr. 2023;261:113483.

The Lighthouse MFGM Clinical Trial Long-Term Follow-Up: Stroop Task at 5.5 Years

The Lighthouse MFGM Clinical Trial Long-Term Follow-Up: DCCS Task at 5.5 Years

Note: There were no between-group differences in the DCCS task 1 (simple rule) or task 2 (switch rule) scores.

Studying the Benefits of MFGM Supplementation in Infant Formula: the COGNIS Clinical Trial

Study design

enter for Health Sciences

- Prospective double-blind randomized controlled trial (RCT)
- Enrolled **170 infants** who were randomized to 18 months of feeding with:
 - » Standard cow's milk-based formula (control)
 - » Standard cow's milk-based formula with added functional compounds, including MFGM, synbiotics, and LC-PUFAs (intervention)
- **Primary outcome:** difference in neurocognitive development measured by Bayley-III scores and other assessments at 4 and 6 years
- Secondary outcomes: tolerability/safety, growth/anthropometrics, infections, and other measures of development

COGNIS Clinical Trial: Neurocognitive Outcomes at 6 Years of Age

K-BIT domain	Standard formula (n = 37)	Intervention formula (n = 39)		
Vocabulary	107.91 ± 13.44	113.16 ± 13.31	103.73 ± 14.26	.022
Matrices	111.51 ± 12.07	113.21 ± 12.00	111.78 ± 11.07	.113
IQ	109.64 ± 11.67	113.46 ± 11.50	105.54 ± 12.40	.031

Key Takeaways

- In randomized trials, MFGM supplementation in infant formula has been associated with improved short- and long-term cognitive outcomes, including:
 - Language
 - IQ
 - Executive function
- The effects of early nutrition persist well beyond the period of feeding and into early childhood
 - These nutrients may play a role in the programming of brain structure and function in infancy and early childhood

Questions?

The Early Nutrition Journey and MFGM: Evidence for Improving Cognitive Outcomes

Questions

Please submit your questions using the question cards found on your table

To claim credit for participation, go to: CEQUIZ.OIG

Credit Designations:

1.5 AMA PRA Category 1 Credits[™] for physicians
1.5 ANCC contact hours for nurses
1.5 CA-BRN contact hours for California nurses
1.5 CDR contact hours for registered dietitians and dietetic technicians

Thank you for joining us.

