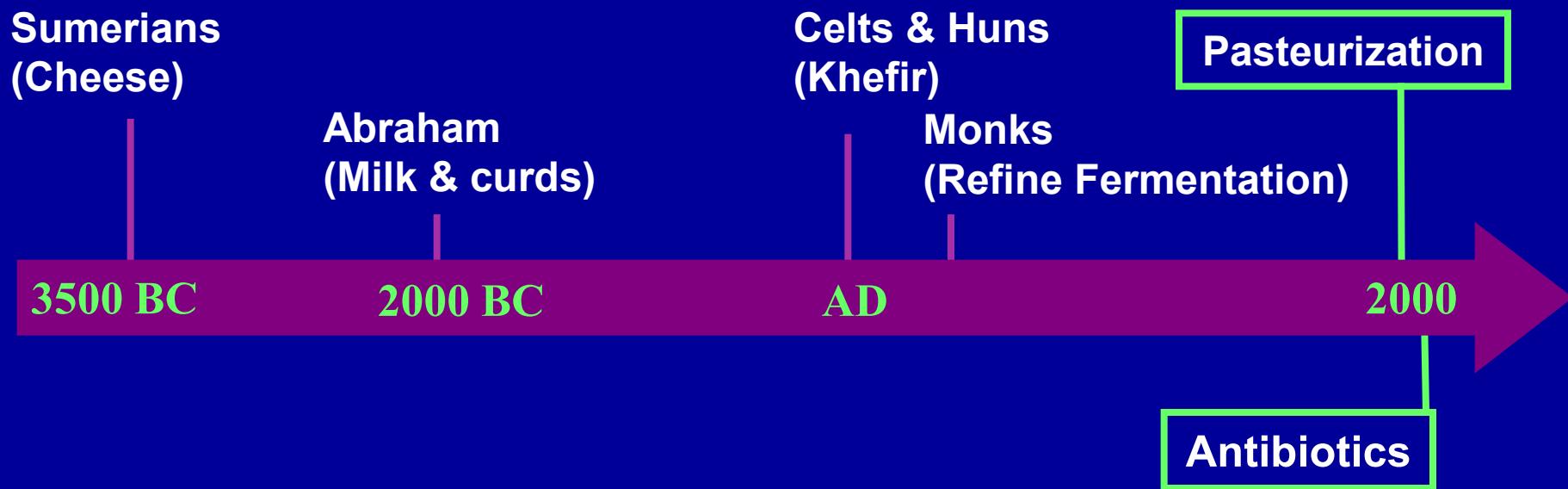


From Probiotics to biotherapeutics in the NICU

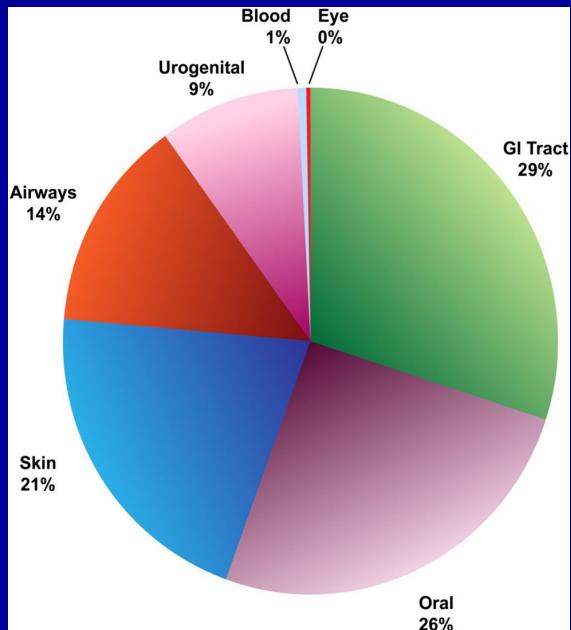
**Teresa del Moral MD, MPH
University of Miami**

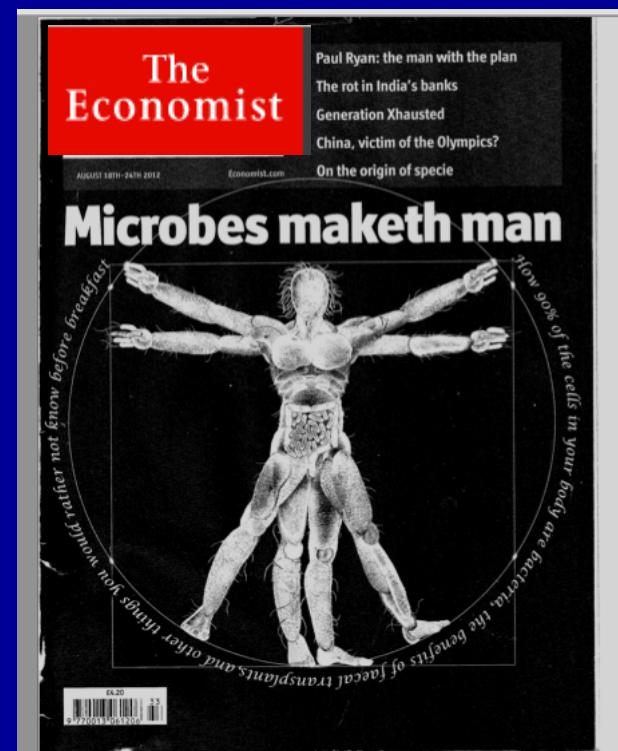
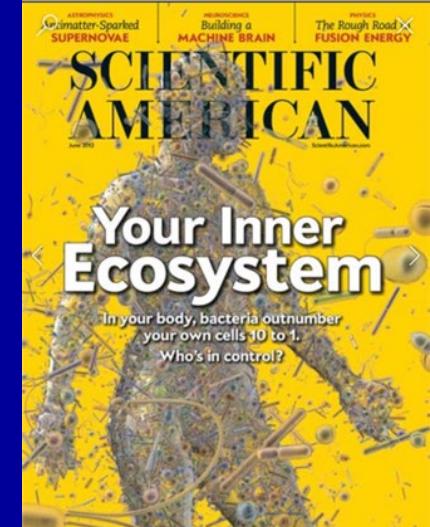
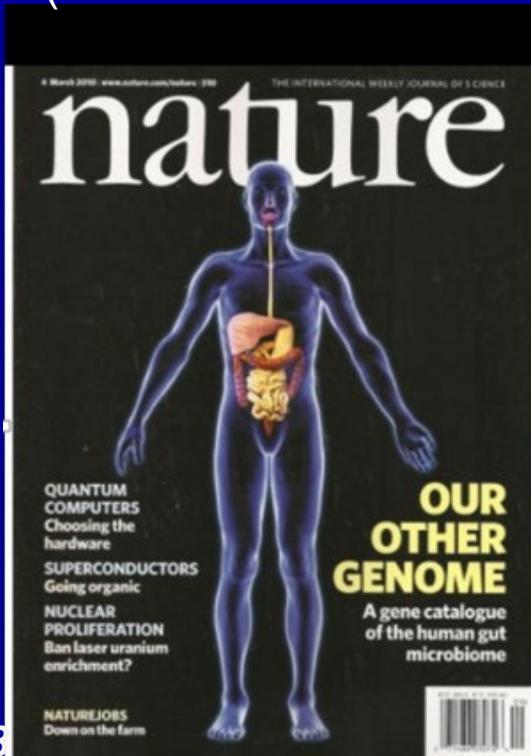

Disclosure

Advisory board

-Mead Johnson

-IBT


Ingestion of Bacteria




In the last 100 years, we drastically changed our ingestion of microbes and our microbial environment.

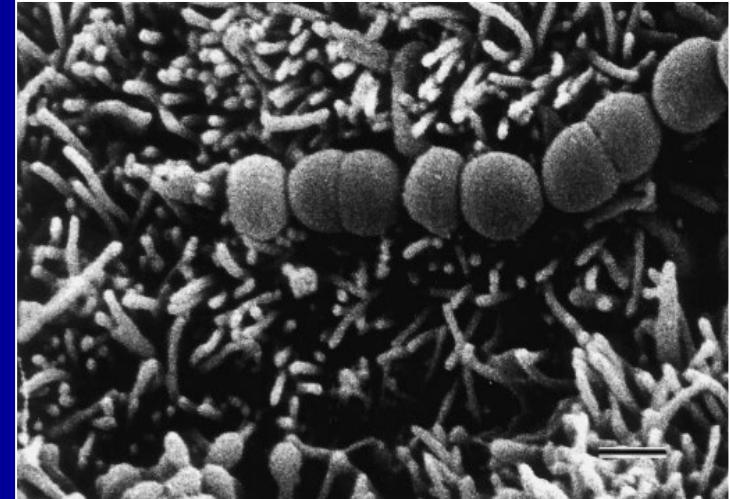
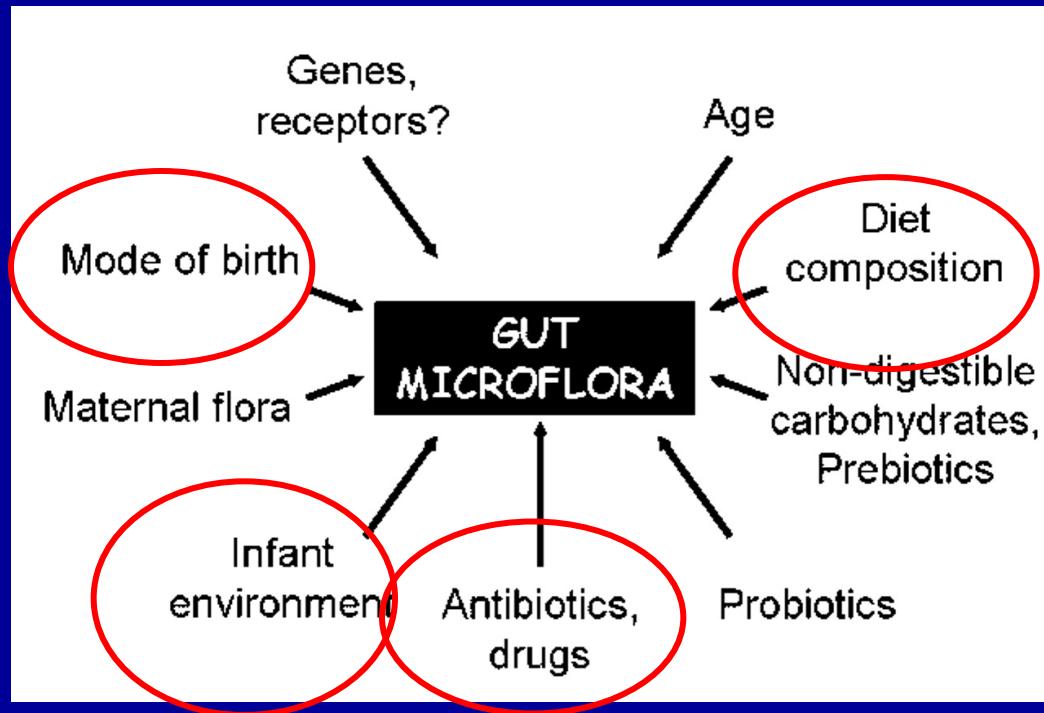
Probiotics: 100 years after Elie Metchnikoff's observation

Human Microbiome Project (HMP)

Genome Res. 2009;19:2317-2323

Microbes maketh man

People are not just people. They are an awful lot of microbes, too

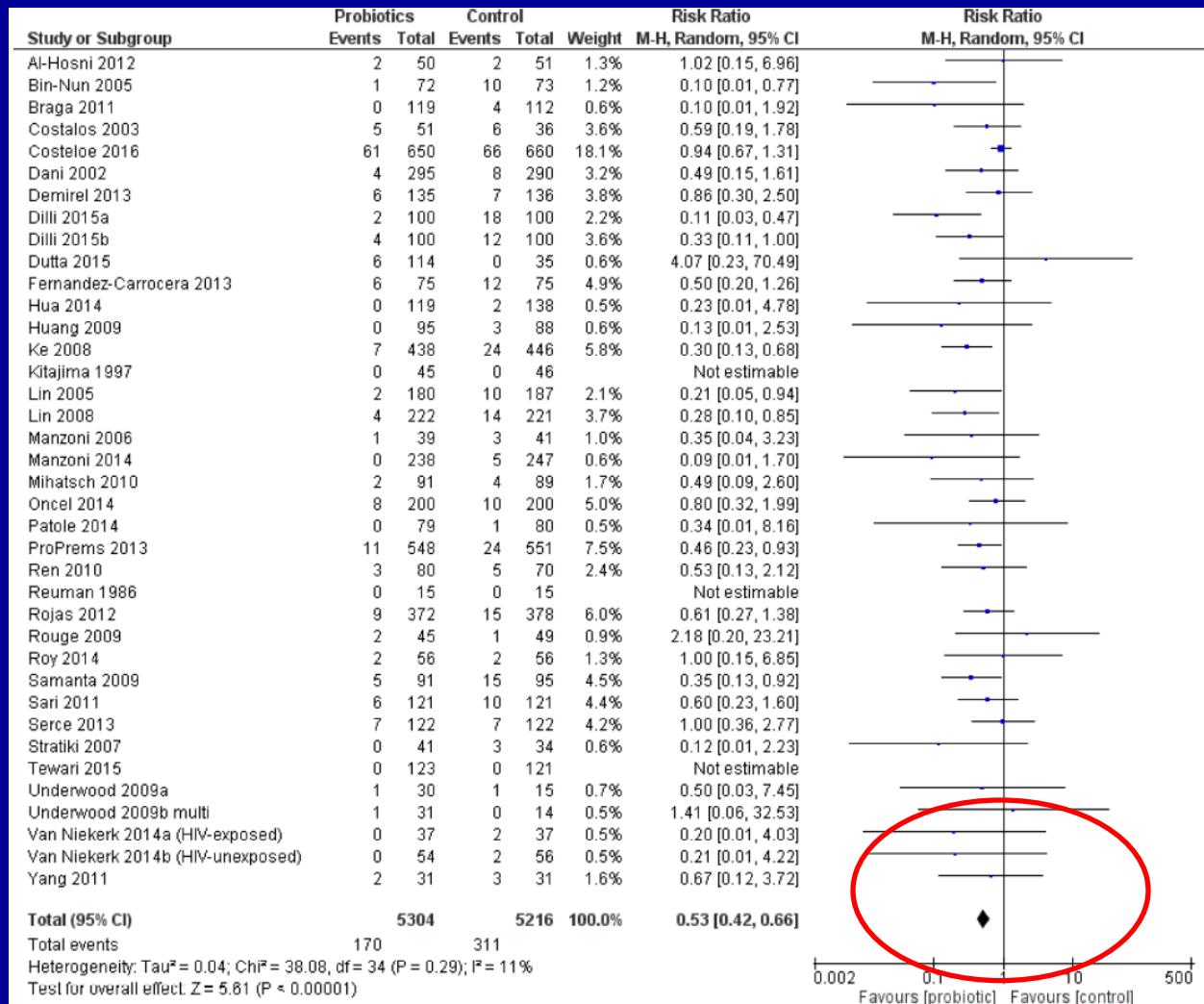



POLITICAL revolutionaries turn the world upside down. Scientific ones more often turn it inside out. And that, almost literally, is happening to the idea of what, biologically speaking, a human being is.

The traditional view is that a

multiple sclerosis, diseases, autism. The deaf, if bugs are not of human consequence. This is looking in the wrong place. It also suggests

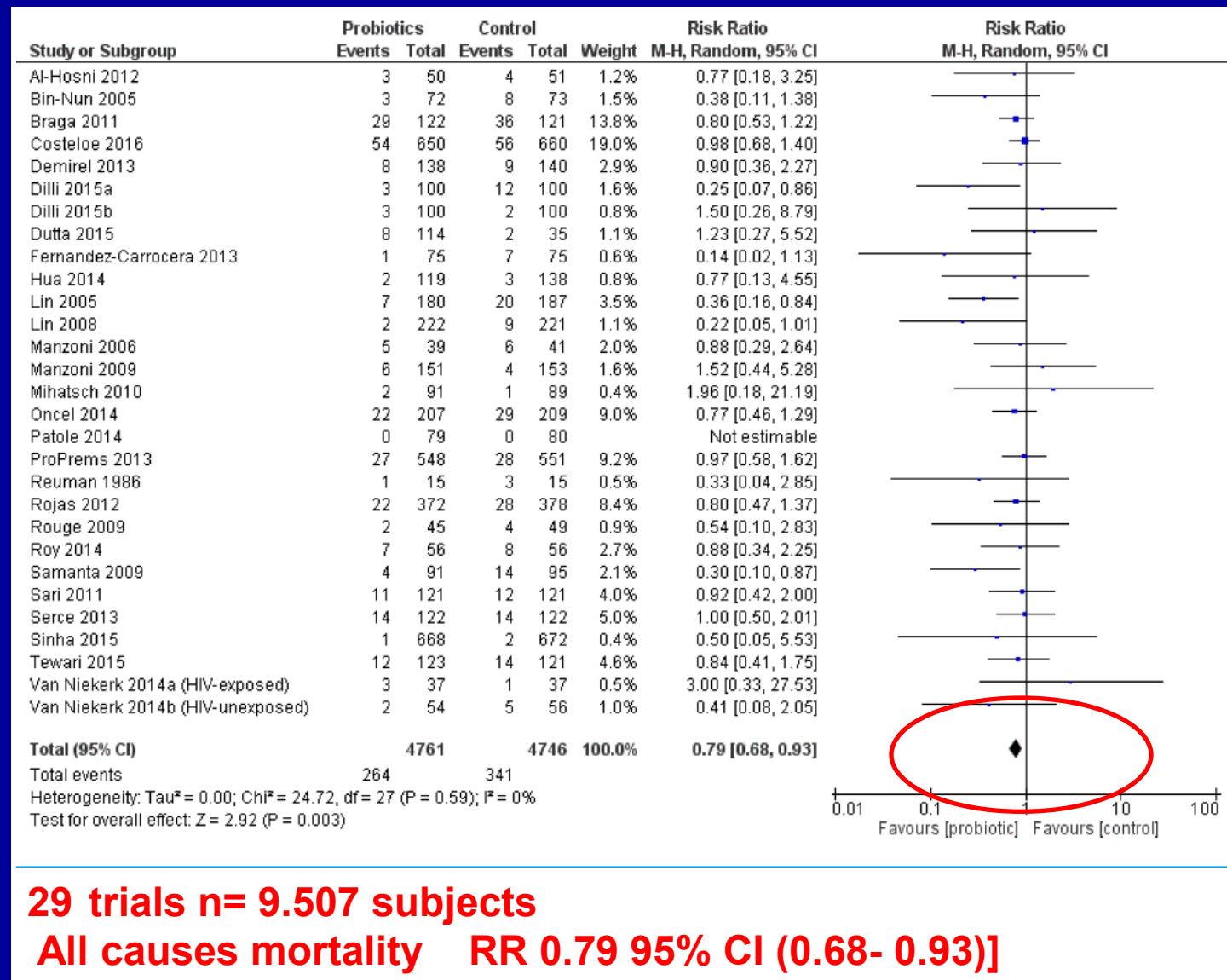
Causes of dysbiosis in premature infants



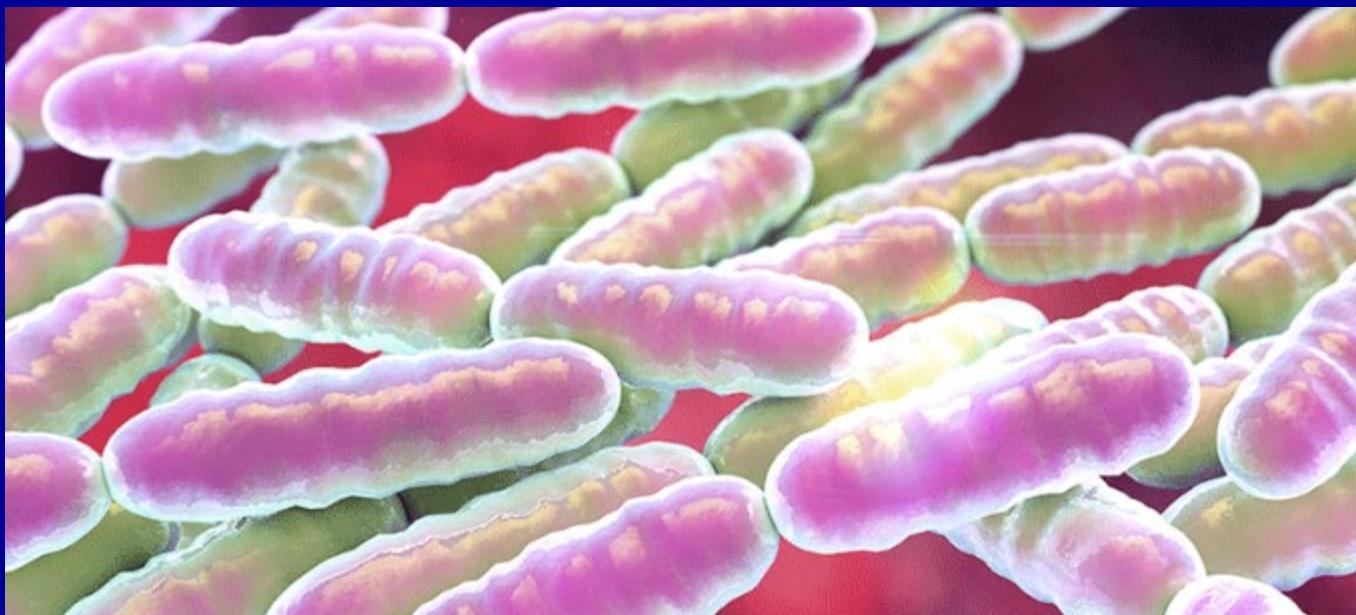
Dysbiosis is prevalent in premature infants

Premature infants is one of the populations that can benefit the most from restauration of microbiota

What is the Evidence?


Prevention of NEC with probiotics: a systematic review and meta-analysis.

38 trials n = 10,520 subjects
Severe NEC in all infants. RR 0.53 95% CI (0.42-0.66)


Sawh et al. (2016), PeerJ, DOI

Prevention of NEC with probiotics: a systematic review and meta-analysis.

29 trials n= 9.507 subjects
All causes mortality RR 0.79 95% CI (0.68- 0.93)]

Should the use of probiotics in the preterm infant be routine?

Millar M, Wilks M, Fleming P, et al. Arch Dis Child Fetal Neonatal Ed (Sep 2010).

Survey of clinical use of probiotics in USA

PROBIOTIC BRAND NAME	SPECIES INCLUDED	AMERICAN NICUs USING PROBIOTICS
Culturelle	<i>Lactobacillus rhamnosus GG</i>	27%
Biogaia	<i>Lactobacillus reuteri</i>	14%
Gerber Soothe	<i>L reuteri</i>	14%
Florababy	<i>Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium bifidum, Bifidobacterium longum, L rhamnosus</i>	9%
Align	<i>B infantis</i>	7%
Floro-Q2	<i>Lactobacillus acidophilus, Lactobacillus paracasei, Bifidobacterium, Streptococcus thermophilus</i>	7%
Risaquad	<i>L acidophilus</i>	6%

14% (70/500) NICUs using probiotics

16 different products

Only 2 validated by clinical trials

ABC Dophilus	<i>B infantis, S thermophilus, B bifidum</i>	3%
Udo's Choice	<i>Lactobacillus casei, L rhamnosus, L acidophilus, B infantis, B bifidum, B breve</i>	3%

Viswanathan et al Journal of Perinatology 2016

Bifidobacterium infantis ***Bifidobacterium bifidum***

Bifidobacterium fecalis

Bifidobacteria longum

Bifidobacterium breve

Bifidobacterium lactis

Bifidobacterium adolescentis
Bifidobacterium infantis—0.35 billion
Bifidobacterium bifidum—0.35 billion
Bifidobacterium thermophilus—0.35 billion
Bifidobacterium Dophilus®—0.35 billion
Bifidobacterium breve—1 billion
Bifidobacterium faecalis—1 billion
Bifidobacterium longum—1 billion
Bifidobacterium acidophilus—1 billion
Bifidobacterium YIT4010—1 billion
YIT4010—Yakult Honsha Co. Ltd., Japan

L. rhamnosus GG 6 billion
+ *Bovine Lactoferrin* 100 mg
(Dicoflor®)

Bovine Lactoferrin 100 mg
(Dicofarm®)

Bifidobacterium lactis—20 billion/g (Nestle®)

L. rhamnosus GG (Valio
Finnish Co-operative Dairies
Association®)

L. rhamnosus GG—0.1 billion
(Valio, Ltd®)

B. longum BB536—0.1 billion
(Morinaga Milk Industry Co,
Ltd®, Tokyo, Japan)

Lactobacillus casei

Lactobacillus rhamnosus

Lactobacillus acidophilus

Lactobacillus plantarum

Lactobacillus reuteri

Lactobacillus lactis

B. breve

L. acidophilus

B. infantis

L. acidophilus

B. bifidum

L. acidophilus

L. casei

L. rhamnosus

L. plantarum

L. reuteri

L. lactis

L. casei

L. rhamnosus

L. acidophilus

L. rhamnosus

Saccharomyces boulardii

B. breve BBG-001 (Yakult
Honsha Co Ltd –Tokyo,
Japan)

L. rhamnosus GG (Dicoflor®)

S. boulardii (Reflor®)

L. rhamnosus—0.44 billion
L. casei—1 billion
Lactobacillus plantarum—
0.176 billion
B. infantis—0.0276 billion
S. thermophilus—0.0066 billion
(Lactipan®)

Bifidobacterium longum

Lactobacillus bulgaricus
S. thermophiles (Golden
Bifid®)

L. rhamnosus GG (Dicoflor®)

Bacillus cereus—0.0005 billion
(*Bifidobacterium tetravaccine*)

S. boulardii (Reflor®)

Streptococcus thermophilus

Shacaromices boulardii

Bacillus cereus

L. reuteri DSM 17938 in oil
(Biogaia®)

L. rhamnosus GG (Dicoflor®)

Probiotics to prevent necrotizing enterocolitis in very preterm or very low birth weight infants (Review)

Probiotics

Control

Risk Ratio

Risk Ratio

Bifidobacterium spp.

	Probiotics	Control			
	nts	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Costeloe 2015	61	650	66	660	20.0% 0.94 [0.67 , 1.31]
Dilli 2015	2	100	18	100	5.5% 0.11 [0.03 , 0.47]
Fujii 2006	0	11	0	8	Not estimable
Hays 2015	8	145	3	52	1.4% 0.96 [0.26 , 3.47]
Hikaru 2010	0	108	0	100	Not estimable
Huang 2009	0	95	3	88	1.1% 0.13 [0.01 , 2.53]
Kitajima 1997	0	45	0	46	Not estimable
Mihatsch 2010	2	91	4	89	1.2% 0.49 [0.09 , 2.60]
Mohan 2006	2	37	1	32	0.3% 1.73 [0.16 , 18.20]
Oshiro 2019	0	17	0	18	Not estimable
Patole 2014	0	77	1	76	0.5% 0.33 [0.01 , 7.95]
Stratiki 2007	0	41	3	36	1.1% 0.13 [0.01 , 2.36]
Totsu 2014	0	120	0	102	Not estimable
Wang 2007	0	22	0	22	Not estimable
Subtotal (95% CI)	1559		1429	31.2%	0.72 [0.54 , 0.96]
Total events:	75		99		

Risk of NEC

0.72 (0.54-0.96)

Lactobacillus spp.

Chaitawongsakul 2012

	0	21	0	26		Not estimable
	4	295	8	290	2.5%	0.49 [0.15 , 1.61]
Dani 2002	1	24	5	20	1.7%	0.17 [0.02 , 1.31]
Hernandez-Enriquez 2016	0	30	0	30	Not estimable	
Indrio 2017	1	39	2	41	0.6%	0.53 [0.05 , 5.57]
Manzoni 2006	0	238	5	247	1.7%	0.09 [0.01 , 1.70]
Manzoni 2009	0	10	0	10	Not estimable	
Millar 1993	8	200	10	200	3.1%	0.80 [0.32 , 1.99]
Oncel 2014	0	15	0	15	Not estimable	
Reuman 1986	1	30	4	25	1.3%	0.21 [0.02 , 1.75]
Sadowska-Krawczenko 2012	2	30	11	30	3.4%	0.18 [0.04 , 0.75]
Shadkam 2015	7	68	8	66	2.5%	0.85 [0.33 , 2.21]
Subtotal (95% CI)	1000		1000	16.6%	0.45 [0.28 , 0.71]	
Total events:	24		53			

0.45 (0.28-0.71)

Probiotics to prevent necrotizing enterocolitis in very preterm or very low birth weight infants (Review)

Risk of NEC

Saccharomyces spp. spp.

Costalos 2003	5	51	6	36	2.2%	0.59 [0.19 , 1.78]
Demirel 2013	6	135	7	136	2.1%	0.86 [0.30 , 2.50]
Serce 2013	7	104	7	104	2.1%	1.00 [0.36 , 2.75]
Zeber-Lubecka 2016	0	27	0	28		Not estimable
Subtotal (95% CI)		317		304	6.4%	0.82 [0.44 , 1.50]
Total events:	18		20			

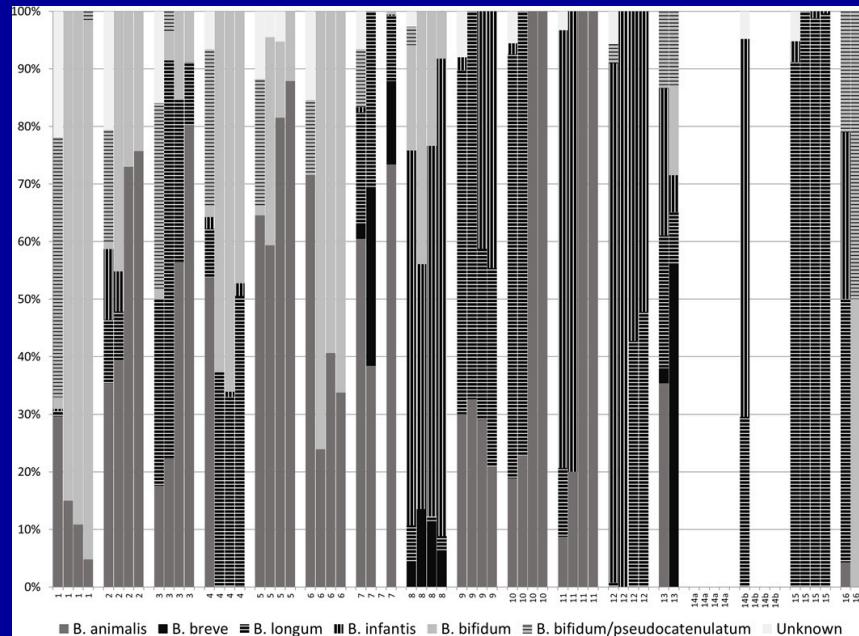
Heterogeneity: $\chi^2 = 0.50$, $df = 2$ ($P = 0.78$); $I^2 = 0\%$

Test for overall effect: $Z = 0.65$ ($P = 0.51$)

Bacillus spp.

Sari 2011	6	110	10	111	3.0%	0.61 [0.23 , 1.61]
Tewari 2015	0	123	0	121		Not estimable
Subtotal (95% CI)		233		232	3.0%	0.61 [0.23 , 1.61]
Total events:	6		10			

0.82 (0.44, 1.50)


Bifidobacterium spp. plus Lactobacillus spp. plus Sacharomyces spp.

Chandrashekhar 2018	0	70	3	70	1.1%	0.14 [0.01 , 2.72]
Dutta 2015	6	114	0	35	0.2%	4.07 [0.23 , 70.49]
Hariharan 2016	3	93	3	103	0.9%	1.11 [0.23 , 5.35]
Shashidhar 2017	2	49	6	49	1.8%	0.33 [0.07 , 1.57]
Subtotal (95% CI)		326		257	4.0%	0.67 [0.28 , 1.58]
Total events:	11		12			

0.67 (0.28, 1.58)

Validating bifidobacterial species and subspecies identity in commercial probiotic products

Sample	B. longum subsp. infantis			B. longum subsp. longum			B. breve			B. animalis			B. bifidum		
	1 st lab	2 nd lab	3 rd lab	1 st lab	2 nd lab	3 rd lab	1 st lab	2 nd lab	3 rd lab	1 st lab	2 nd lab	3 rd lab	1 st lab	2 nd lab	3 rd lab
1	~														
2	x	x	x	x	x	x				x	x	x	x	x	x
3	x			x	x	x	x			x	x	x	x	x	x
4	~	~	~	x	x	x	x			x			~	x	x
5													x	x	x
6	x			x						x			x	x	x
7	~	~	~	x	x	x	x	~	x	x	x	x	x	x	~
8	x	x	x	x	x	x	x	~	~	x	x	x		x	x
9	x	~	x	x	x	x	x	x	x				x	x	x
10	x	~		x	x	x							x	x	x
11	x	x	x				x						x	x	x
12	x	x	x	x	x		~	x	x						
13	x	x	x	n/a	n/a	x	x	x	n/a	n/a	x	~	x	n/a	n/a
14a	x					x							x		
14b		x				x							x		
15	x	~	~	~	~	x	x	x	x				x	n/a	n/a
16	x	x	n/a	n/a	x	x	n/a	n/a	x		n/a	n/a	x	x	x

16 different probiotics containing *bifidobacteria*
 Pill to pill variability 16
 Unlisted species
 Only one tested matched the species claimed on the label

Factors to consider when establishing the efficacy of probiotics administration include:

- accurate identification and labelling of strain used
- the viability of the organism
- consistency of product formulation over the course of the study

Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics

Only products manufactured according to current good manufacturing practices should be used

van der Akker et al 2020

Use of Probiotics in Preterm Infants

Brenda Poindexter, MD, MS, FAAP, COMMITTEE ON FETUS AND NEWBORN

A pharmaceutical-grade probiotic product is not currently available in the United States. Long-term safety remains unknown

Current evidence does not support the routine, universal administration of probiotics to preterm infants, **particularly those with a birth weight of <1000 g.**

Poindexter B et al, Pediatrics AAP 2021

REGULATIONS

Dietary supplement

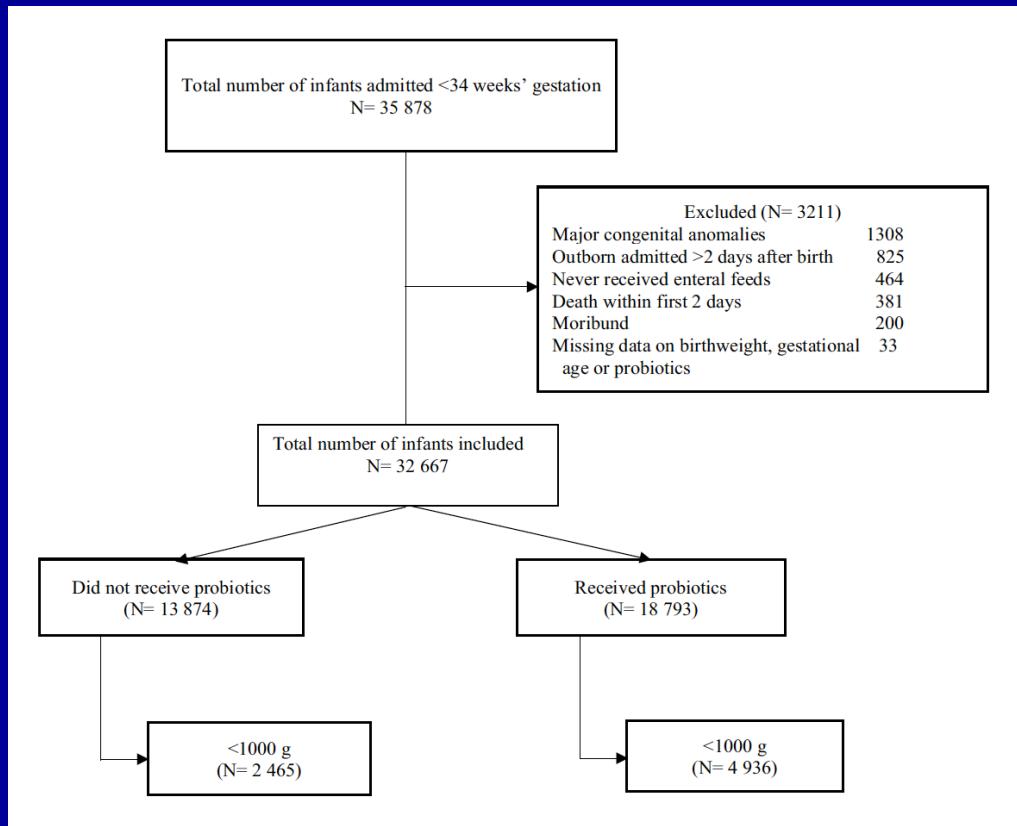
- Center for Food Safety and Applied Nutrition
- GRAS (Generally Recognized As Safe)

Live Biotherapeutic (FDA)

- A probiotic used to diagnosis, cure treat or prevent diseases is a drug and a biological product
- The Center for Biologics Evaluation and Research regulates biological products when used for clinical indications (IND, US, 21CFR 312)

Most of the products currently available in the United States are categorized as dietary supplements and are not labeled with the number of CFUs for the probiotic strain

Dietary supplements (Probiotics) vs Biotherapeutic


Supplements: Considered safe until proven unsafe vs

Prescription Medicines: Considered unsafe until proven safe and effective

	Supplements	Biotherapeutic
FDA Classification	Dietary Supplements to Improve Health	Live Biotherapeutic Product
Proof of Safety	Not Required	Required
Proof of Effectiveness	Not Required	Required
Post-Marketing Surveillance	Not Required	Required
Good Manufacturing Practices (GMPs)	Food GMPs	Pharmaceutical GMPs
Reimbursable by Insurance	No	Yes
Disease Treatment Claims	Not Allowed	Allowed

Effectiveness and Risks of Probiotics in Preterm Infants

Alshaikh et al for the Canadian Neonatal Network .Pediatrics Feb 2025

- 4 *Bifidobacterium* strains (*Bifidobacterium breve*, *Bifidobacterium bifidum*, *Bifidobacterium longum sub sp*, and *Bifidobacterium neonateis*) and *Lactobacillus rhamnosus*.
- Single-strain probiotic *Lactobacillus reuteri*.

Effectiveness and Risks of Probiotics in Preterm Infants

Alshaikh et al for the Canadian Neonatal Network .Pediatrics Feb 2025

TABLE 2. Neonatal Outcomes by Probiotic Exposure

Outcomes	<34 Weeks' GA			<1000-g Birth Weight		
	No Probiotics (N = 13 874)	Probiotics (N = 18 793)	P Value ^a	No Probiotics (N = 2465)	Probiotics (N = 4936)	P Value ^a
Primary, % (n/N)						
NEC (medical or surgical)	2.63 (364/13 862)	3.63 (683/18 792)	<.001	8.78 (216/2460)	9.91 (489/4935)	.12
All-cause death before discharge	3.55 (492/13 874)	3.74 (702/18 793)	.37	15.17 (374/2465)	11.93 (589/4936)	<.001
Late-onset sepsis	6.77 (940/13 874)	9.27 (1742/18 793)	<.001	25.56 (630/2465)	25.75 (1271/4936)	.86

NEC

< 34 weeks 2.6% vs 3.6%, p <0.001
<1000 g, no difference

Mortality

< 34 weeks, no difference
<1000 g 15.7% vs 11.9 %, p <0.001

Late onset sepsis

<34 weeks 6.7% vs 9.2%, p<0.001
< 1000 g, no difference

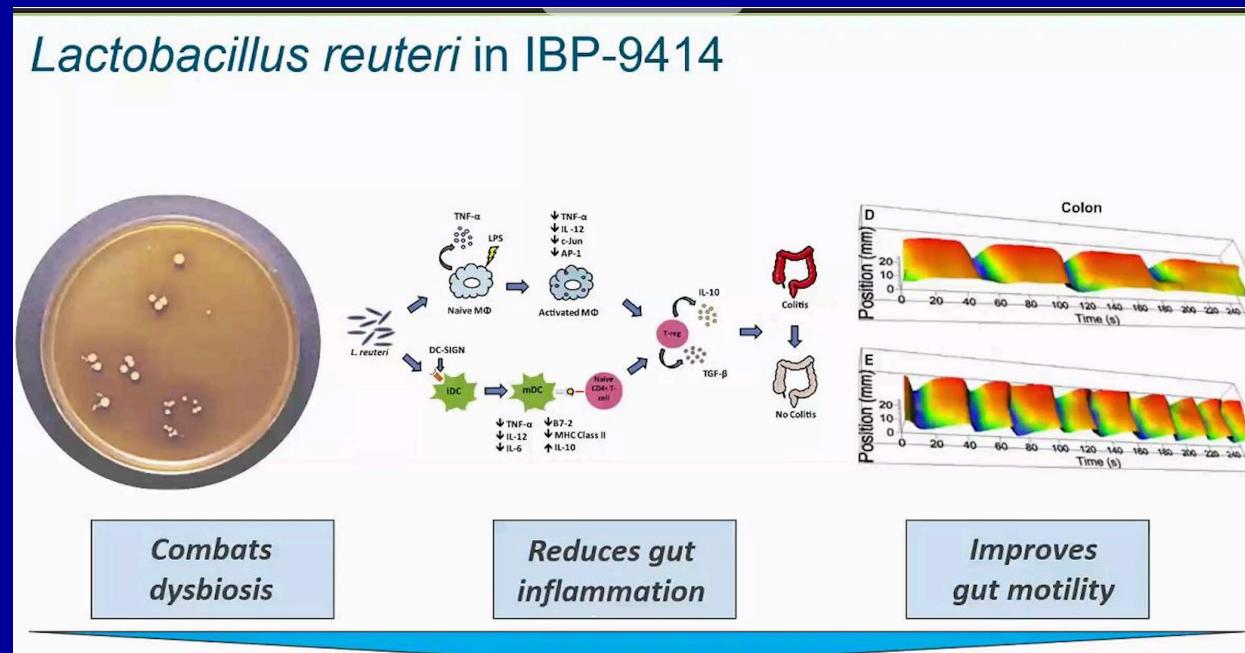
Effectiveness and Risks of Probiotics in Preterm Infants

Alshaikh et al for the Canadian Neonatal Network. *Pediatrics* Feb 2025

TABLE 4. Characteristics of Infants With Probiotic-Associated Sepsis

Characteristics	<34 Weeks' GA ^a			<1000-g Birth Weight ^a		
	No Probiotic Sepsis (n = 18 760)	Probiotic Sepsis (n = 27)	P Value	No Probiotic Sepsis (n = 4912)	Probiotic Sepsis (n = 20)	P Value
GA, median (IQR), wk	29 (27–31)	25 (24–27)	<.001	26 (24–27)	25 (23.5–26)	.02
GA 22–28 wk, % (n/N)	38 (7145/18 760)	85 (23/27)	<.001	89 (4350/4912)	100 (20/20)	.16
GA 29–33 wk, % (n/N)	62 (11 615/18 760)	15 (4/27)		11 (562/4912)	0 (0/20)	
Birth weight, median (IQR), g	1307 (980–1630)	680 (620–1000)	<.001	790 (670–895)	632 (605–778)	.001
Antenatal steroids, % (n/N)	91 (16 828/18 594)	89 (24/27)	.74	92 (4474/4880)	90 (18/20)	.69
Cesarean birth, % (n/N)	64 (12 029/18 750)	59 (16/27)	.60	67 (3315/4912)	60 (12/20)	.48
Male sex, % (n/N)	55 (10 220/18 749)	67 (18/27)	.20	51 (2487/4907)	70 (14/20)	.08
Small for GA, % (n/N)	12 (2201/18 749)	22 (6/27)	.12	23 (1107/4907)	30 (6/20)	.42
SNAP-II >20, % (n/N)	12 (2267/18 703)	37 (10/27)	<.001	30 (1446/4899)	50 (10/20)	.045
Age of first feed, median (IQR), d	2 (1–2)	2 (1–2)	.23	2 (1–2)	2 (1–2.5)	.62

Abbreviations: GA, gestational age; SNAP-II, Score for Neonatal Acute Physiology version II.


^a Analysis is restricted to infants who received probiotics.

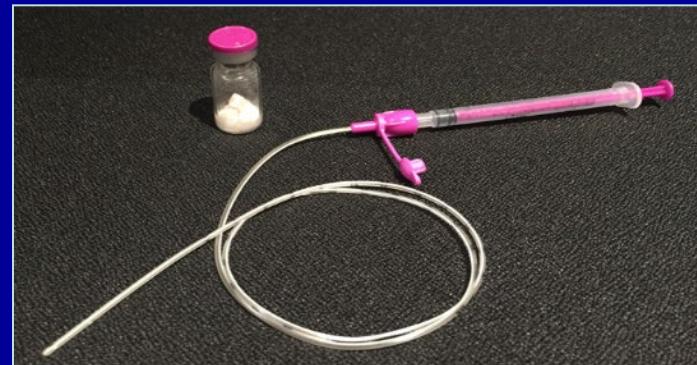
< 34 weeks: 27 infants had probiotic sepsis / 11 (41%) NEC or spontaneous intestinal perforation 7 days before or after probiotic sepsis

< 1000 g: 24 infants had probiotic sepsis / 9 (45%) had NEC or intestinal perforation 7 days before and after probiotic sepsis. 3 died within 7 days of probiotic sepsis

A randomized, double blind, parallel-group, placebo-controlled study to evaluate the efficacy and safety of IBP-9414 in premature infants 500-1500g birth weight in the prevention of necrotizing enterocolitis – The Connection study

Multicenter study in USA and Europe FDA and EMA regulated

Drug Product IBP-9414


Development of IBP-9414 as a live bacterial therapy for the prevention of NEC.

Under drug manufacture and regulations

IBP-9414 has been approved by the FDA for orphan drug designation for the prevention of NEC.

IBP-9414

- Freeze-dried powder for oral suspension
- Oral-enteral feeding
- Manufacturing process developed to allow opening of IND

A randomized, double blind, parallel-group, dose escalation placebo-controlled multicenter study to investigate the safety and tolerability of IBP-9414 administered to preterm infants

Primary Outcome

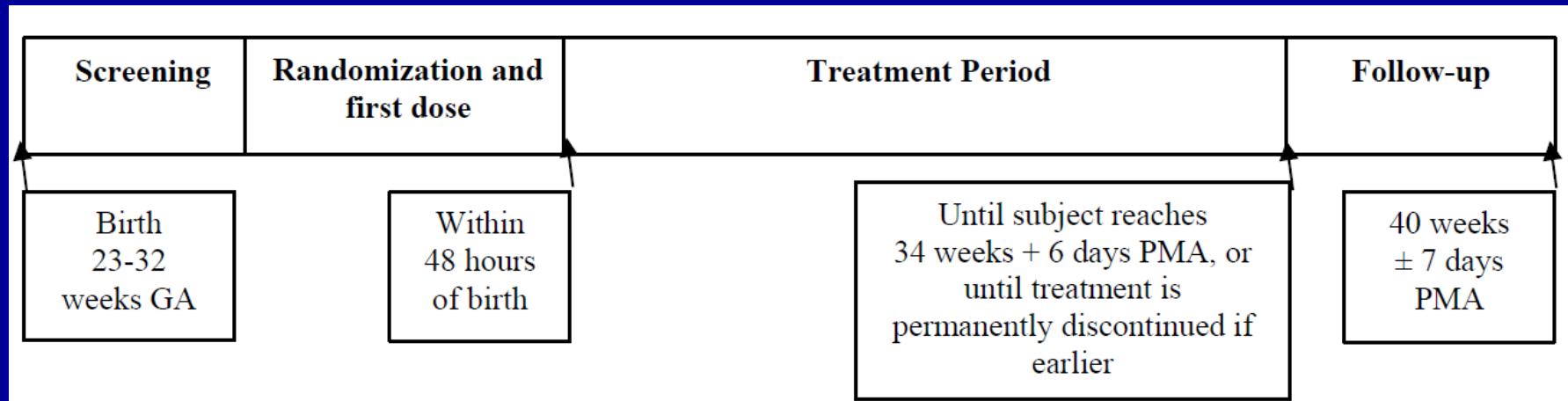
	Cohort A: Low dose (n=16)	Cohort A: Placebo (n=13)	Cohort B: High dose (n=16)	Cohort B: Placebo (n=14)	Cohort C: Low dose (n=14)	Cohort C: Placebo (n=16)	Cohort D: High dose (n=15)	Cohort D: Placebo (n=15)
Number of infants with Adverse Events (AEs)	9	11	10	6	13	12	14	14
Total number of AEs	29	30	51	24	51	48	64	58
Number infants with Serious Adverse Events (SAEs)	3	2	2	1	3	2	2	2
Total number of SAEs	6	3	2	3	5	4	2	4
Related AEs	0	0	1	0	3	2	0	2
Related SAEs	0	0	0	0	0	0	0	1
Number infants where AE led to Study Drug withdrawal	0	0	0	0	0	1	0	1
Death	0	0	0	0	0	0	0	0

A randomized, double blind, parallel-group, dose escalation placebo-controlled multicenter study to investigate the safety and tolerability of IBP-9414 administered to preterm infants

Fecal Analysis – Real Time qPCR Analysis

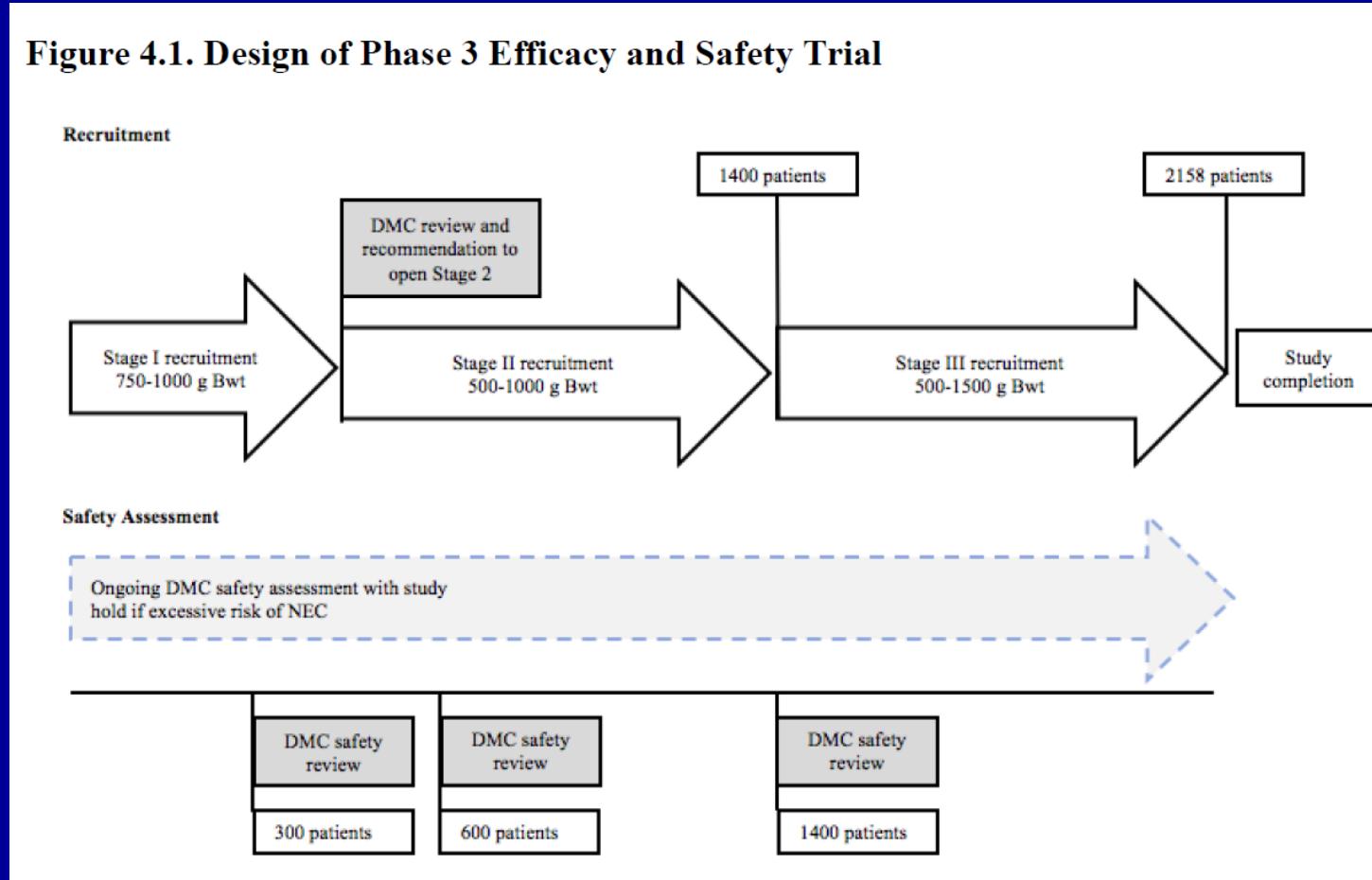
	Cohort A: Low dose	Cohort A: Placebo	Cohort B: High dose	Cohort B: Placebo	Cohort C: Low dose	Cohort C: Placebo	Cohort D: High dose	Cohort D: Placebo
Last day of study treatment	61623* (111110) (n=11)	6 (12) (n=10)	25764* (173111) (n=12)	3 (112) (n=10)	1423 ^{NS} (10269) (n=5)	7 (874) (n=10)	58251* (311599) (n=8)	40 (75) (n=12)
30 days after last dose	160 (760) (n=7)	297 (371) (n=5)	184 (6437) (n=3)	473 (513) (n=5)	40 (61) (n=9)	59 (184) (n=8)	40 (87) (n=12)	18 (35) (n=12)

Median (Interquartile range) for bacterial counts per qPCR reaction. * P<0.001 vs placebo and ^{NS} not significant vs placebo.


- Treatment with IBP-9414 leads to presence of bacterium in the feces on day of last dose: all IBP-treated, 31491 (121875) vs all placebo, 10 (91); P<0.001, Rank sum Wilcoxon
- Cross-contamination did not occur in placebo treated infants
- Smaller infants needed the higher dose to display IBP-9414 in the feces
- 30 days after last dose, the bacteria have been washed out: all IBP-treated, 63 (184) vs all placebo, 42 (290); NS, Rank sum Wilcoxon

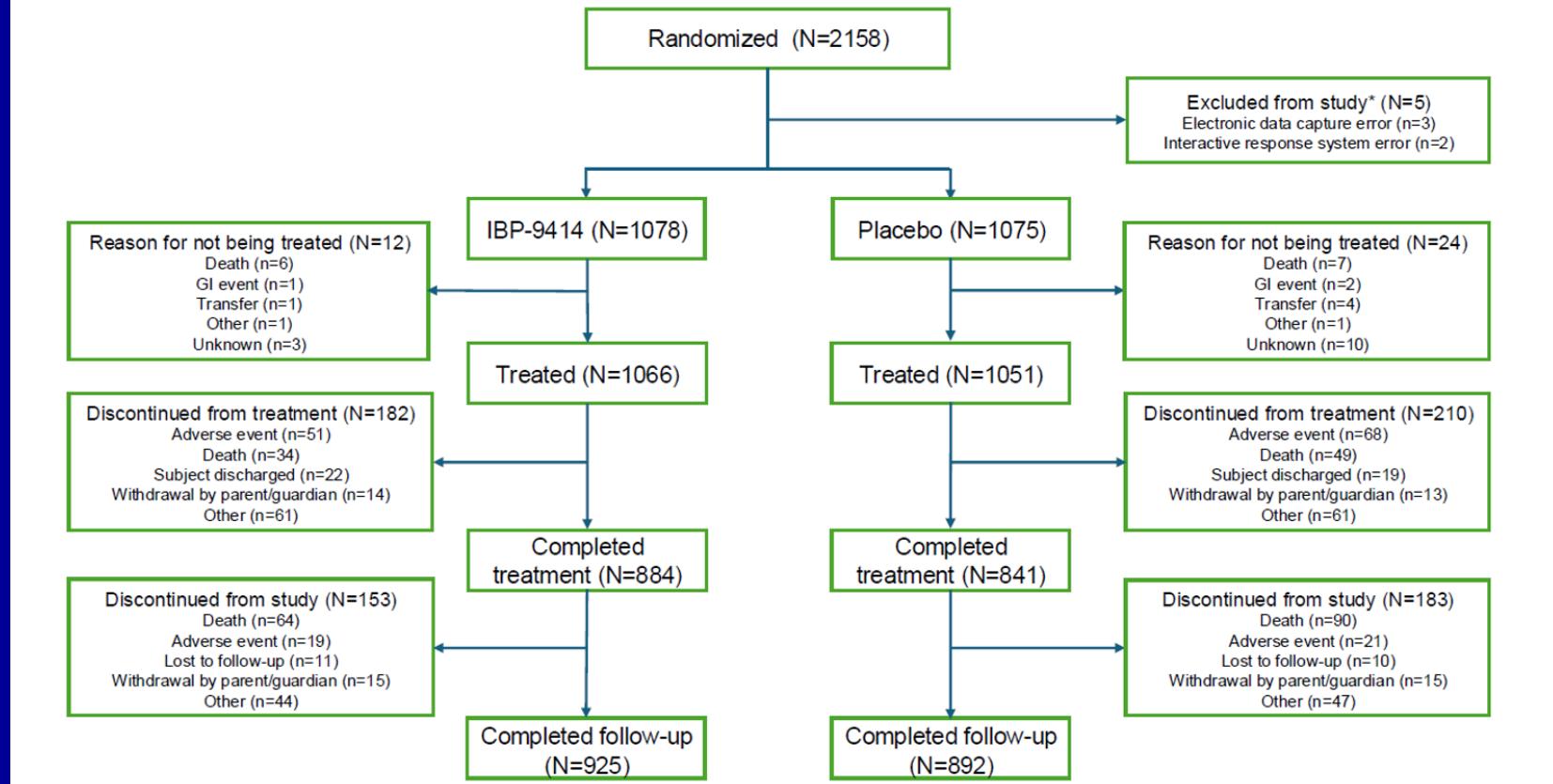
Primary efficacy endpoints

- Prevention of NEC
- Time to sustained feeding tolerance


Secondary endpoints,

- NEC confirmed at laparotomy or autopsy,
- all-cause mortality,
- total weight gain,
- duration of hospitalization

- Birth weight of 500-1500g
- Gestational age 23 weeks+0 days - 32 weeks+0 days at birth,
- ≤48 hours of age

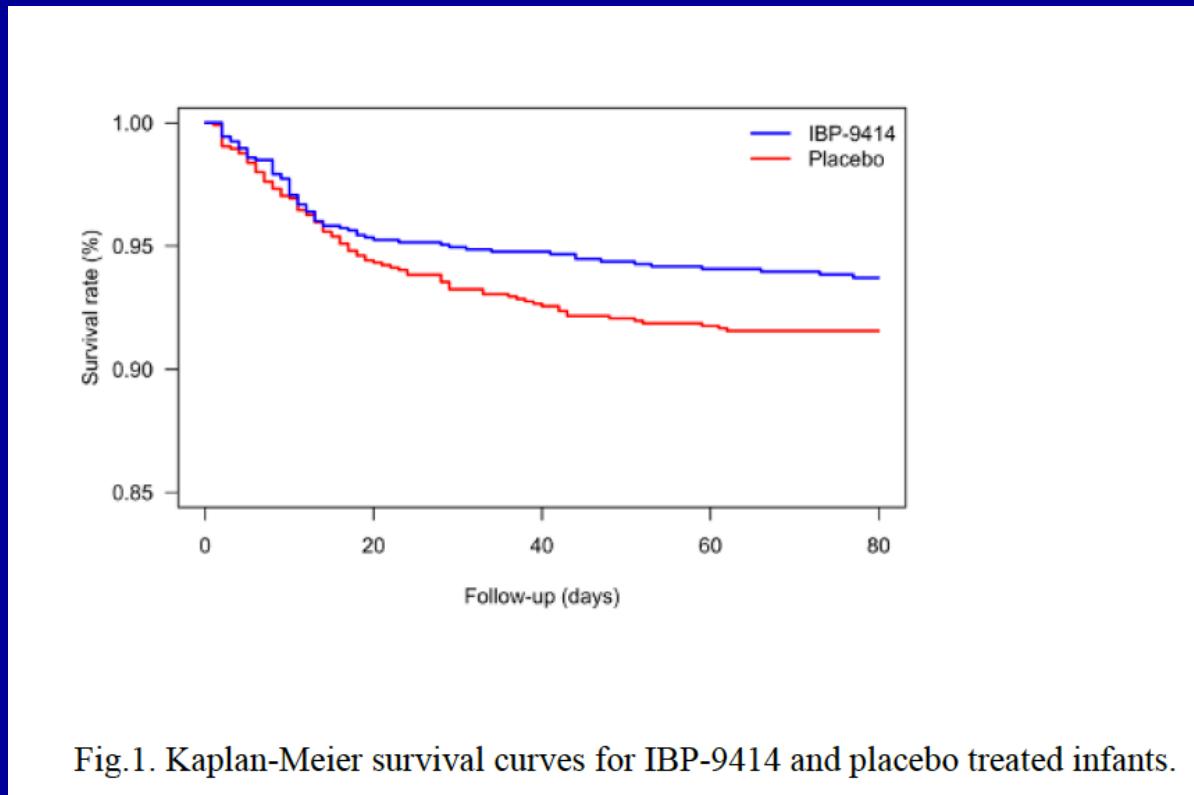

Figure 4.1. Design of Phase 3 Efficacy and Safety Trial

J.Neu, et al ,submitted for publication

Effects of IBP-9414, a Live Biotherapeutic Product on necrotizing enterocolitis, time to full enteral feeding, and mortality in very low birth weight infants: Results from the “Connection Study”

CONSORT diagram. Enrollment was conducted from July 2019-April 2024, with final follow-up in July 2024.

J. Neu, et al ,submitted for publication


Effects of IBP-9414, a Live Biotherapeutic Product on necrotizing enterocolitis, time to full enteral feeding, and mortality in very low birth weight infants: Results from the “Connection Study”.

Necrotizing enterocolitis	N	IBT Events (%)	N	Placebo Events (%)	p value
Total	1066	93 (8.7%)	1051	107 (10.2%)	0.24
Post 14 days	1032	59 (5.7%)	1023	79 (7.7%)	0.067
Surgical NEC					
Total	1066	8 (0.8%)	1051	15 (1.4%)	0.128
Post 14 días	1061	3 (0.3%)	1046	10 (1.0%)	0.045
NEC Surgical / Death					
Total	1066	15 (1.4)	1051	23 (2.3%)	0.124
Post 14 días	1057	6 (0.6)	1044	17 (1.6%)	0.018

IBP-9414 decreased the risk of severe NEC (surgical or post mortem path) after 14 days

J.Neu, T del Moral, S.Guthrie, M Hudak, , F.Indrio, J.Kim, A.Kronström, C.Martin, N.Modi, J.Rastad, R. Singh, S.Strömberg, H.Szajewska, M. Thuresson, M.Caplan

Effects of IBP-9414, a Live Biotherapeutic Product on necrotizing enterocolitis, time to full enteral feeding, and mortality in very low birth weight infants: Results from the “Connection Study”.

	IBP- 9414	Placebo	RR (95% CI)	P
Mortality	66 (6.2%)	89 (8.5%)	0.73 (0.54 - 0.98)	0.036
Mortality after 14 days	22 (2.2%)	42 (4.2%)	0.52 (0.31 - 0.85)	0.007

**27%
MORTALITY
DECREASE**

J.Neu, T del Moral, S.Guthrie, M Hudak, , F.Indrio, J.Kim, A.Kronström, C.Martin, N.Modi, J.Rastad, R. Singh, S.Strömberg, H.Szajewska, M. Thuresson, M.Caplan

Effects of IBP-9414, a Live Biotherapeutic Product on necrotizing enterocolitis, time to full enteral feeding, and mortality in very low birth weight infants: Results from the “Connection Study”.

Serious adverse event, n (%)	IBP-9414 (N=1084)	Placebo (N=1033)
Infants with \geq 1 serious adverse event	244 (22.5)	270 (26.1)
Infections and infestations		
Sepsis	42 (3.9)	54 (5.2)
Pneumonia	6 (0.6)	13 (1.3)
Respiratory, thoracic, and mediastinal disorders		
Bronchopulmonary dysplasia	36 (3.3)	31 (3.0)
Respiratory failure	23 (2.1)	30 (2.9)
Pulmonary hemorrhage	13 (1.2)	16 (1.5)
Apnea	4 (0.4)	12 (1.2)
Gastrointestinal disorders		
Necrotizing (entero)colitis	49 (4.5)	61 (5.9)
Intestinal perforation	18 (1.7)	26 (2.5)
Nervous system disorders		
Intraventricular hemorrhage	26 (2.4)	45 (4.4)
Congenital, familial, and genetic disorders		
Patent ductus arteriosus	19 (1.8)	18 (1.7)
Vascular disorders		
Hypotension	10 (0.9)	16 (1.5)

Probiotic supplement reduces risk of necrotizing enterocolitis and mortality in preterm very low-birth-weight infants: an updated meta-analysis of 20 randomized, controlled trial (Wang 2012)

Table 3 Summary of pooled RR with 95% CI in the subgroup analyses

I^2 Heterogeneity							
Subgroup analyses	Studies (no. in probiotics group/no. in placebo group)	RR					Model
		RR (95%CI)	P_{RR}	I^2 Heterogeneity	P Heterogeneity		
Bifidobacteria							
NEC	8 (509/467)	0.30 (0.16-0.58)	.0003	0	.64	Fixed	
Mortality	3 (174/166)	0.74 (0.18-2.97)	.67	0	.51	Fixed	
Sepsis	3 (174/166)	0.84 (0.29-2.41)	.74	0.21	.28	Fixed	
Lactobacillus and Bifidobacteria							
NEC	6 (714/689)	0.33 (0.19-0.58)	.0001	0	.51	Fixed	
Mortality	5 (653/660)	0.47 (0.26-0.87)	.02	49	.09	Random	
Sepsis	5 (653/660)	0.90 (0.60-1.36)	.62	71	.007	Random	
Lactobacillus							
NEC	4 (595/610)	0.37 (0.19-0.73)	.004	0	.40	Fixed	
Mortality	4 (595/610)	0.61 (0.38-0.97)	.04	0	.88	Fixed	
Sepsis	4 (595/610)	0.79 (0.46-1.36)	.40	71	.01	Random	

I^2 Heterogeneity indicates the I^2 value for heterogeneity analysis; $P_{Heterogeneity}$, the P value for heterogeneity analysis.

PROBIOTICOS IN PERINATOLOGY

- Research to investigate specific mechanisms of action
- Defining the strains or combination of strains that have clinical benefits
- Regulations that guarantee the product composition and safety
- Explore strategies on how to prevent dysbiosis in premature infant

Thank you

Picasso

